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ABSTRACT 

PROBING BONDING AND DYNAMICS AT HETEROGENEOUS 

ADSORBATE/GRAPHENE INTERFACES 

 

by 

Eric Mattson 

 

The University of Wisconsin-Milwaukee, 2013 

Under the Supervision of Professor Carol Hirschmugl 

 

Graphene-based materials are becoming an astoundingly promising choice for many relevant 

technological and environmental applications.  Deriving graphene from the reduction of 

graphene oxide (GO) is becoming a popular and inexpensive route toward the synthesis of 

these materials.  While the desired product from GO reduction is pristine graphene, defects 

and residual oxygen functional groups inherited from the parent GO render reduced graphene 

oxide (RGO) distinct from graphene.  In this work, the structure and bonding for GO and 

RGO is investigated to the end of a working understanding of the composition and properties 

of these materials.  In situ selected area electron diffraction and ex situ IR microspectroscopy 

are used to study, respectively, thermal and chemical reduction of GO.  The residual oxygen 

functional groups are found to be predominantly epoxide, C-O-C, bonded oxygen.  The role 

of these oxygen functional groups and the collective RGO in gas sensing applications is 

investigated by performing in situ IR spectromicroscopy studies of molecular adsorption onto 

RGO.  NO2 and NH3 are the target molecules of interest; NH3 due to its widespread use in 

industry and NO2 is  a a common byproducts in combustion reactions.  Following adsorption 

of both molecules, numerous species are identified on the surface due to the heterogeneity of 

the substrate.  Residual epoxide groups participate in reactions with the target molecules to 
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produce additional surface species that have varying impacts on the conductivity of the 

substrate.     
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Chapter 1:  Background and Introduction 

1.1  Organization of the Dissertation 

 The organization of the dissertation is as follows:  Chapter 1 introduces the motivation of 

the dissertation and background information on the materials under consideration.  Chapter 2 

discusses the experimental techniques and details of the measurements used in the work.  

Chapter 3 discusses the development of synchrotron IR spectromicroscopy, characterizing the 

relationships between microscope optics, spatial resolution and deconvolution.  Chapter 4 gives a 

characterization of the structure and properties of reduced graphene oxide prepared by vacuum 

thermal reduction on Molybdenum supports and by chemical reduction.  Chapters 5 and 6 

explore the adsorption of NH3 and NO2, respectively, on chemically reduced graphene oxide 

(RGO).   

 

1.2  Nanomaterials 

The field of nanotechnology focuses on materials in which dimensionality (D) is limited 

to the nanoscale in one or more directions.  In recent years, this field has been growing 

continuously on both fundamental and applied fronts.  Examples of nanomaterials can include 

surfaces/films/single atomic layers (2D), nanowires and nanotubes (1D) and quantum dots or 

nanocrystals (OD).  Nanostructuring of materials by tailoring atomic-scale structure and 

composition often leads to new and interesting properties that are often not observed in their bulk 

counterparts, opening entirely new disciplines of science.  Their properties can be engineered to 

serve a desirable purpose through processes such as chemical modification, doping and 
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heterostructuring.  This versatility has made nanotechnology a frontrunner in solving a variety of 

technological problems ranging from energy to medicine.   

 A key attribute of nanostructured materials is their extremely high surface-to-volume 

ratio; this property enables a number of attractive properties such as enhanced reactivity and 

ability to functionalize, grow on, or heterostructure with other materials.   The work of this 

dissertation focuses on understanding the structure and bonding of various types of 

nanomaterials, their interfaces with atomic or molecular adsorbates  and the effects that the 

different components of the interface have on one another.   

1.2.1 Graphene 

Graphene is a single atomic layer of graphite.  Graphite is the most common allotrope of carbon, 

consisting layers of carbon atoms in a hexagonal honeycomb lattice staked in a Bernal or AB 

stacking order.  The crystal structure of graphite is shown in Fig. 1.1A.  Graphene can be thought 

of as removing one of the layers in Fig. 1.1A.  Each graphene layer has the atomic structure 

shown in Fig. 1.1B; the lattice constant of graphene is 2.46 Å and the C-C bond length is 1.42 Å.  

Although the concept of graphene has been used for many years, it was not until 2004 that a 

single graphene layer was successfully isolated [1].  This experimental breakthrough and the 

following characterization of the physical properties of graphene has led to an explosion of the 

field of carbon-based materials science, with tens of thousands of papers published in the field 

since 2004 and the award of the Nobel Prize in physics in 2010.  Graphene has since intrigued 

materials scientists from both fundamental science and applied perspective.  The appeal of 

graphene as a material for so many potential applications is driven from its many unique and 

exciting properties.  The first and most obvious property is its high surface-to-volume ratio, 
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which is a defining characteristic of all nanomaterials.  Since graphene is a single atomic layer, 

every atom in the crystal is present on the surface, leading to the highest possible surface-to-

volume ratio.  Second, graphene is remarkably strong, with the C-C bonds being the strongest of  

 

Fig. 1.1:  Crystal structure of graphite seen from c-axis (A) and perspective (B) views.  The crystal 
structure of a single graphite layer (graphene) is shown in (C).  A graphite crystal is composed by 
stacking the individual hexagonal layers in an AB sequence with an interlayer spacing of 3.35 Å. 

 

any known material.  The most sought after properties of graphene, however, are derived from its 

electronic structure.  A schematic diagram of the band dispersion of a single graphene layer is 

shown in Fig. 1.2.  The defining characteristic of graphene’s electronic properties is the linear 

dispersion of the valence and conduction bands, which meet to form cones whose tips touch one  
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Fig. 1.2:  Schematic diagram of the dispersion of the valence and conduction states in graphene.  From 
[2]. 

 

another at the K-point of the Brillouin zone [2, 3].  The fact that the electronic states near the 

Fermi energy have a linear dispersion implies that the effective mass of the charge carriers is 

zero, leading to extremely high carrier mobility [1].  In intrinsic, free-standing graphene, the 

Fermi energy is located exactly at the point at which the valence and conduction bands touch one 

another, rendering graphene a zero-gap semiconductor or semimetal.  The absence of a finite 

band gap makes is very easy to manipulate the population of the bands using electric fields, 

leading to ambipolar transport [1].  In addition, since every atom is in fact a surface atom, 

graphene lends itself superbly to chemical doping, and adsorption of atoms and molecules on its 

surface leads to a substantial modulation of the electronic properties.  These characteristics make 

graphene an ideal component for solid-state sensing [4], in addition to numerous other 

applications.  In addition, the structure and strength of graphene make it ideal as a support for 
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heterostructured materials that can combine the appealing properties of graphene with those of 

other materials.         

1.3  Motivation 

Beyond the general motivation of "general scientific interest," there are aspects of the work that 

are technologically relevant in a number of fields.  A few such applications are discussed. 

1.3.1 Development of IR Spectromicroscopy and Deconvolution with Synchrotron 

Radiation (Chapter 3) 

Infrared (IR) spectromicroscopy experiments at the recently developed IRENI beamline [5] 

are a central component to the work in this dissertation. The characterization of the beamline and 

instrumental performance are thus of central importance to the results presented here, as it was 

used for the largest body of work in this dissertation.  The work in Chapter 3 evaluates the 

imaging characteristics of the beamline, and uses the determination of the point spread function 

(PSF) to develop deconvolution algorithms.  In addition, the assessment of the instrument's 

imaging performance and development of deconvolution have motivation beyond the study of 

graphene-based systems.  IR chemical imaging or spectromicroscopy is growing as a tool for 

many disciplines, particularly for studying biological systems.[6-8]  Thus, the evaluation of the 

imaging characteristics of the instrument and the application of deconvolution is of relevance 

and is of general interest to the IR imaging community.  In addition to the materials science 

applications presented here, the work in Chapter 3 has also been applied toward understanding 

Malaria infection in blood cells, the structure of spider silk, and the composition of dorsal root 

ganglion (DRG) neurons responsible for chronic pain.     
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1.3.2 Probing the Structure of Reduced Graphene Oxide (Chapter 4) 

The largest component of this work focuses on the characterization of the properties of 

chemically modified graphene.  Studying the properties of graphene oxide (GO) and different 

types of reduced graphene oxide (RGO) as in Chapter 3 is important for the development of 

these materials in electronic applications.  The most imminent application in which this work is 

directly relevant is toward solid state gas sensors, discussed in detail below.  Understanding the 

structure and bonding configuration of the RGO substrates is a critical first step toward an actual 

understanding of the adsorbate-substrate interactions and the mechanism of operation of sensors.  

In addition, RGO is being used increasingly as an electronic material and a catalyst support [9-

17].  For these applications, it is critical to have a working knowledge of the composition and 

electronic structure of the materials in question, as these properties directly impact device 

performance.  The correlation of bonding and concentration of oxygen functional groups to 

material properties goes directly to the use of the materials in technological applications.  

Particularly for the case of RGO, there have been many conflicting reports of the structure and 

composition of the reduced material following thermal and chemical treatments, reviewed in 

Chapter 4.  The work presented here contributes to the gap in the knowledge on this subject 

through a combination of in situ electron diffraction studies and ex situ IR spectromicroscopy 

studies of RGO produced through different treatments.      

1.3.3 NH3/RGO and NO2/RGO Interfaces (Chapters 5-6) 

The interaction between the substrate and the adsorbate define the characteristics of a gas sensor 

or catalyst material.  Although the interactions between graphene and GO substrates with 

relevant gas molecules have been considered to some extent theoretically [18-20], relatively little 
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experimental characterization of the gas-surface interactions has been reported.  Bermudez and 

Robinson [21] used internal reflection IR spectroscopy under ambient atmospheric conditions to 

probe small molecules, including ammonia, on graphene; however, their sensitivity was not 

sufficient to observe the internal molecular vibrational modes and no conclusions regarding the 

bonding configuration of NH3 were drawn.  Zhou et. al. [22] studied the adsorption of NO2 on 

epitaxial graphene using angle resolved photoemission measurements, but no connection to 

bonding or the interaction with defects was considered.  The adsorption of NO2 and NH3 onto 

carbon nanotube (CNT) films was investigated using IR spectroscopy by Ellison et. al., [23] but 

the substrates in that case were structurally and chemically distinct from the materials under 

consideration here.  This has been the driving motivation behind the in situ IR measurements of 

the gas-surface interfaces of sensor materials.  The goal of these experiments has been to identify 

which molecular fragments are present on the substrates and their bonding configuration during 

realistic sensing conditions for NH3 and NO2 detection.  In addition, broadband IR absorption 

measurements provide additional insight into the mechanism behind the conductivity changes 

and changes to the electronic states of graphene-based sensors during operation.  In addition, the 

work impacts RGO as an electronic material; just as the current silicon based electronics industry 

relies heavily on the properties of doped silicon, the effects of chemical doping and adsorption 

onto graphene and RGO sheets are one means of realizing the electrical properties desired for a 

particular application.   

  

1.4  Solid State Gas Sensors 

 Gas sensors that are tuned to selectively detect a certain type of molecule with high 

sensitivity have a remarkably wide range of application including environmental monitoring, 
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medical diagnosis and security.  While certain aspects of the actual operation/environmental 

interaction of different sensor materials remain controversial, driving the motivation of this 

work, the general mechanism of operation is well accepted.  Solid state sensors consist of a 

semiconducting material that completes an electronic circuit.  In the absence of any adsorbates, 

the semiconducting gate will have a certain free carrier density that determines the resistance of 

the circuit.  For oxide semiconductors such as SnO2, TiO2 and ZnO, materials that are currently 

used in solid state sensors, the density of carriers available for conduction depends on the 

doping, impurities on the surface, surface stoichiometry and temperature.  When a molecule 

approaches the surface of the semiconducting sensor component, adsorption can take place via 

one of several channels including 1) direct adsorption, 2) reaction with adsorbed species native 

on the surface, or 3) reaction with a surface oxygen vacancy.  Depending on the 

oxidizing/reducing characteristics of the target molecules, the potential adsorption processes can 

either increase or decrease the number of free charge carriers.     

 Most existing gas sensors employ metal oxides such as SnO2 for the sensing material.  

The problem with this approach is that oxides typically have a fairly wide band gap, and elevated 

temperature is needed to create the number of free charge carriers required to achieve the signal-

to-noise ratio (SNR) needed for high sensitivity.  Under many circumstances, this is either 

impractical or dangerous.  Materials scientists have employed many techniques to lower the 

operation temperature of solid state sensors while still maintaining the desired properties for 

sensing.  One route that was explored involved the syndissertation of materials containing metal 

oxide nanocrystals that decorate a conducting carbon channel.  For example, sensors based on 

SnO2-decorated multi-walled carbon nanotubes (MWCNTs) have been shown [24] to produce 
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room temperature sensitivity to NO2 and NH3.  Silver nanocrystals added to the above materials 

were also shown to enhance the sensitivity toward NO2 and NH3 [25, 26].   

 More recently, it was demonstrated that reduced graphene oxide (RGO) without any 

metal or metal oxide component was also sensitive to NO2 and NH3 [27-30], and that sensitivity 

and selectivity toward a particular molecule could be tuned by applying a gate voltage or 

decorating with metal or metal oxide nanocrystals [29, 31-34].  Based on these recent 

breakthroughs, it is of paramount importance to identify the gas-surface interactions between 

target molecules and RGO for optimization and commissioning of actual devices.  To this end, 

RGO and its interactions with gaseous environments is investigated in this work.  While often 

RGO is combined with oxide nanocrystals for even further enhanced sensitivity, this work will 

only address molecular adsorption onto RGO, and not onto nanocrystal-decorated RGO.   

 

1.4.1 RGO Sensor Design 

 In this work, RGO and its interaction with the gases NO2 and NH3 are studied as a first 

step toward understanding the operation of RGO-based devices.  The work is performed in 

collaboration with Prof. Junhong Chen, UW-Milwaukee Mechanical Engineering Dept.  A 

schematic diagram of an RGO-based sensor is shown in Fig. 1.3A.  The substrate consists of a Si 

wafer coated with a 200 nm layer of SiO2.  On top of the SiO2 layer, a set of interdigitated gold 

electrodes are deposited (Fig. 1.3B), which act as the source and the drain.  Then, the RGO is 

deposited onto the electrodes to complete the circuit.  The device offers the possibility also to 

gate the RGO using the Si wafer as the gate electrode.  When a gas molecule adsorbs to the 

surface via one of the 3 channels discussed above, the carrier density in the RGO is modified and 
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a change in the resistance is measured.  The sensing response is often given as the ratio of the 

resistance of the adsorbate covered sensor to that of the clean sensor, Ra/Rg.     

 RGO is considered to be a p-type semiconductor, meaning that the dominant charge 

carriers are holes.  In the simplest picture, residual oxygen functional groups act as electron 

acceptor to leave free holes available for conduction.  Therefore, adsorption of a reducing gas 

such as NH3 is expected to increase the resistance, and adsorption of oxidizing gases such as 

NO2 are expected to decrease the  

           

Fig. 1.3:  A) Schematic diagram of an RGO-based gas sensor. From ref [27]  B) Scanning electron 
microscopy (SEM) image of RGO deposited on Au electrodes.  From ref [29]. 

 

resistance.  This is indeed the response that is observed in actual sensors; Fig. 1.5 shows the 

response of an RGO gas sensor to 100 ppm NO2 and 1% NH3 diluted in air.  It can be seen that 

the resistance Rg/Ra decreases when the sample is exposed to NO2, and increases when the 

sensor is exposed to NH3 (note that the y-axis scales are opposite for the two cases). 

 Reported studies [28-30] have demonstrated that RGO can produce impressive results for 

sensing of small quantities of gases; however, an in-depth understanding of the actual interaction 
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between the adsorbate and the surface is needed in order to fully exploit RGO for technological 

purposes.  Such an account of the gas-surface interactions could also shed light on the use of 

RGO for other applications.           

 

  

Fig. 1.4:  Sensing response of RGO to NO2 (A) and NH3 (B).  From ref [29]. 
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Chapter 2:  Methods and Instrumentation Background 

2.1 Infrared Spectroscopy 

 Infrared radiation consists of the portion of the electromagnetic spectrum spanning the 

broadband wavelength region from approximately 1-1000 micrometers, or 1.24 meV to 1.24 eV .  

Many fundamental excitations in condensed matter can occur within this wavelength region; in 

this work the transitions of interest consist of optical phonon modes, molecular vibrations of 

adsorbed species, and interband electronic excitations.  For vibrational excitations, there exists a 

general selection rule for infrared/optical activity of any given mode: the transition must induce a 

so-called dynamical dipole moment, which is equivalent to requiring that the vibrational excited 

state must have the same symmetry as a component of the translation operator [1].  This 

selection rule follows directly from the evaluation of the matrix element in Fermi’s Golden Rule 

for the transition rate [2]: 

 ܴ௜՜௙ ൌ
ଶగ

԰
௙ܧ൫ߜԢ|݅଴ۧ|ଶܪ|଴݂ۦ|

଴ െ ௜ܧ
଴ െ ԰߱൯  (2.1) 

Where f 0 and i0 are the unperturbed initial and final states, H1 is the interaction Hamiltonian, Ef 
0 

and Ei
0 are the unperturbed energies of the states f 0 and i0, and ԰ is Planck’s constant.  

Evaluation of the matrix element in 1.1 for an electromagnetic perturbation leads to integrals of 

the form [1],  

׬ ߰௙
௜݀߬߰ ࢞כ

ஶ
ିஶ    (2.2) 
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which is define the transition dipole moment of the excitation.  Thus, the IR selection rule can be 

used as an intuitive guide for the interpretation of IR spectra: only vibrational excitations that 

produced a dynamical dipole moment are optically active.   

 In addition to vibrations of the atoms in a solid or a molecule, IR spectroscopy can also 

be used as a probe of the low-energy electronic structure of a solid.  Two types of excitations are 

possible for a conducing solid; in the intraband transition process, free carriers are excited to a 

higher energy state within the same band, leading to a so-called Drude peak at zero frequency.  

For the case of a narrow-gap semiconductor or semimetal, absorption of an IR photon can also 

excite an electron from the valence band to the conduction band; i.e., an interband transition.  

Interband transitions are of particular interest for the work presented here; in the case of 

graphene and graphite, the Drude peak is located in the far IR region, below the detectable range 

of the experimental setup discussed below.  On the other hand, the interband transitions in 

graphene-based materials span the entire IR frequency region and extend into the visible region 

of the spectrum.  The relationships between optically active electronic transitions, optical 

transmission and reflection were discussed by Dressel and Grüner [3].  Optically active 

electronic transitions can be directly correlated to measurements of IR reflectivity or 

transmission; in the thin film limit, the optical transmission is defined in terms of the real and 

imaginary parts of the refractive index, [3]   

ܶ ൎ ቂ1 െ
ሺଵି௡ሻమା௞మ

ሺଵା௡ሻమା௞మ
ቃ
ଶ
 ሽ (2.3)݀ߙሼെ݌ݔ݁

where n and k are, respectively, the real and imaginary parts of the refractive index, d is the 

thickness of the film, and  is the absorptivity defined by  
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ߙ ൌ ଶ௞ఠ

௖
   (2.4) 

The complex refractive index, dielectric function, and optical conductivity are related quantities 

that describe the response of a material to an electromagnetic perturbation.  The theory of 

excitations in a material is most commonly formulated in terms of the complex dielectric 

function ̂ߝ ൌ ଵߝ ൅  ଶ, where the real component of the dielectric function describes dispersionߝ݅

and the imaginary part absorption.  In a crystalline solid, the excitations of electrons between 

different bands is subject to a selection rule just as for the case of vibrational excitations.  In this 

case, application of the Golden Rule leads to a similar selection rule where the absorption of 

radiation is proportional to the "dipole matrix element",  

௟ᇱ௟࢖ ൌ ۄ݈࢑|࢖|Ԣ݈࢑ۃ ൌ െ ௜ ԰

୼
׬ ௟ᇱݑ

 כ
୼  (2.5)  ࢘௟݀ݑ׏

for a transition between bands indexed l and l' at momentum k.  Here the  is the area of the 

Brillouin zone and ul are the coefficients of the Bloch wavefunctions for the states l and l'.  The 

absorption coefficient is then given by 

௟ᇲ௟ሺ߱ሻߙ ൌ
௘మ

గ௡௖ఠ௠మ ׬ ሼ԰߱ߜ௟ᇱ௟|ଶ࢖| െ ԰߱௟ᇱ௟ሽ ݀࢑
 
஻௓          (2.6) 

where e and m are the electron charge and mass, respectively, and the integral is taken over the 

Brillouin zone.  The integral over the Brillouin zone appearing in the absorption coefficient can 

be recast into a different form known as the joint density of states (JDOS)[3]:   

׬ ሼ԰߱ߜ௟ᇱ௟|ଶ࢖| െ ԰߱௟ᇱ௟ሽ ݀࢑
 
஻௓ ൌ ׬

ௗௌഄ

หൣܓ׏கౢᇲሺܓሻିகౢሺܓሻ൧ห
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԰ఠୀఌ೗ᇲ೗

 (2.7) 

In this case, the integration is carried over a surface of constant energy in momentum space.  Eq. 

2.1.7 is particularly useful for understanding absorption lineshapes due to electronic interband 
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transitions.  For example, a direct transition between parabolic valence and conduction bands 

with a band gap Eg yields a singularity in the JDOS, and evaluation of 2.1.7 gives for a three-

dimensional solid, 

௖௩ሺ԰߱ሻܦ ൌ
ଵ

ሺଶగሻమ
ቀଶఓ
԰మ
ቁ
ଷ/ଶ

൫԰߱ െ ௚൯ܧ
ଵ/ଶ

 (2.8) 

indicating a square-root dependence of the JDOS on the photon frequency for transitions near the 

band edge.  Importantly, (2.8) was derived for a three-dimensional crystal, requiring that the 

integral over the Brilloin zone is a volume integral.  In the case where the electronic states 

depend on only two components of the wavevector, for the same type singularity in the JDOS, 

the integral in (2.7) is carried out over the area of the Brillouin zone and reduces to a constant 

value that is independent of wavelength.   

2.1.1 IR Studies of Adsorption on Solid Surfaces 

IR studies of adsorption of atoms and molecules on solid surfaces can provide invaluable 

information on the adsorbate bonding configuration because the measured vibrational 

frequencies are directly correlated to the strength of a particular bond.  In addition, the overall 

number of observed frequencies can be directly linked to the symmetry of the adsorbate/substrate 

system.  A given adsorbate in the gas phase has 3N degrees of freedom; following adsorption 

onto a surface, the degrees of freedom associated with translation and rotation in the gas phase 

become vibrations in the adsorbed state.  For the case of molecular adsorbates, the vibrational 

spectrum will be composed of intermolecular vibrational modes as well as the frustrated 

translations and rotations of the entire molecule.  The symmetry of the adsorption site and of the 

adsorbate will ultimately determine how many nondegenerate modes will be present, and the 
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rules of group theory can be applied to identify the number of IR active modes expected for a 

given system.   

In a conventional surface-science experiment, [4, 5] the spectra from the gas-solid 

interface are sampled by an IR beam incident on the sample from a grazing angle.  In a 

conducting sample, free carriers in the solid reflect the beam from the surface to amplify the 

electric field components perpendicular to the surface and eliminate the field components 

parallel to the surface in the region immediately neighboring the surface.  The grazing incidence 

geometry is chosen [5, 6] to optimize the field components normal to the surface and hence 

optimize the sensitivity of the experiment.  On a metal surface, image charges have the effect of 

cancelling dynamical dipole moments parallel to the surface, and consequently only vibrations 

that have a dipole component normal to the surface are allowed.  In contrast, transparent samples 

lend themselves more so to transmission.  In particular, thin films such as few layers of graphene 

allow an IR beam to be transmitted from arbitrary incidence and allow for the detection of all 

fundamentally active modes both parallel and perpendicular to the surface.  Simultaneously, the 

change in transmittance due to contributions from the electronic absorption is recorded over a 

broadband frequency region.  Thus in an IR transmission experiment sampling adsorption of 

molecules on graphene, both the adsorbate vibrational modes and the substrate interband 

transitions are sampled simultaneously.   

2.2 Infrared Spectromicroscopy 

 For studying samples which are microscopic in one or more dimensions or 

inhomogeneous at micrometer length-scales, it becomes necessary to perform IR 

Spectromicroscopy.  While the emphasis in this work is on materials science of carbon-based 
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materials, IR Spectromicroscopy is also an unique tool for studying the chemistry of biological 

materials.  This has been one of the driving factors in the development and characterization of 

IRENI and the construction and implementation of deconvolution algorithms, discussed in 

chapter 3.  Conventional IR spectromicroscopy is performed by focusing an IR beam down to a 

micrometer-scale spot using a Cassegrain or Schwarzschild optical arrangement [7, 8] (Fig. 2.1) 

and performing measurements in a dual-aperture confocal geometry.  Schwarzschild optics 

consist of two parabolic mirrors of different diameters, offset from one another.  The primary 

concave mirror (larger, with hole in the center) collects the focused beam originating at the 

sample plane.  The smaller, secondary convex mirror is positioned close to the focus of the 

concave mirror. Thus, the smaller mirror collects the radiation and focuses the beam so that it 

exits through the hole in the primary concave mirror.   The use of apertures allows for the 

specific illumination of a particular region of the sample, which is then raster-scanned through 

the beam path to form a pixelated data set, consisting of an entire IR spectrum at each pixel.  The 

data collected in this fashion are three dimensional "hyperspectral cubes" or maps of the 

absorbance as a function of position.  Two dimensions of the cube represent position on the 

sample and the third dimension represents the spectral domain and consists of an absorption or 

transmission spectrum.  IR or chemical images are then generated by considering the absorption 

at a particular wavelength/frequency for each pixel in the dataset.  This allows for spatially 

resolved visualization of IR absorption over the region being imaged.  The data presented as 

absorption as a function of position can be considered as projected images of the IR absorption 

of the sample and are referred to as chemical images since they provide a visualization of the 

chemistry of the sample.  The challenge of this approach is to focus enough light through the 

aperture and onto the sample to achieve sufficient signal-to-noise ratio (SNR).  Conventional 
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thermal sources have the undesirable qualities of large emittance (area-angle product) and low 

brightness, which corresponds to a low photon flux per solid angle.  Synchrotron/storage ring 

sources, on the other hand, have a very low emittance and high brightness, which allows a much 

greater photon flux to be focused onto a small region of the sample [9].  Using this approach, 

illumination of sample areas down to 3×3 m2 has been achieved using synchrotron sources [10].  

Still, this approach remains prohibitive for high resolution imaging in reasonable acquisition 

times.   

 

Figure 2.1:  Schematic representation of the Schwarzschild optical arrangement.  The optics consist of 
two parabolic mirrors (radii r1 and r2) offset from one another.  The smaller secondary mirror effectively 
obscures the opening of the primary mirror, forming an effective annular aperture toward the incoming 
illumination.  From [11] 

2.2.1 IRENI 

 The synchrotron beamline IRENI (InfraRed ENvironmental Imaging) was recently 

developed [9, 12] to address the challenge of the tradeoff between spatial resolution, signal-to-

noise ratio (SNR) and acquisition times in IR spectromicroscopy.  Two unique components of 

this beamline differentiate it from other beamlines to overcome the resolution/SNR/acquisition 
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time tradeoffs.   The first distinguishing aspect is the use of a commercial large area focal plane 

array (FPA) detector.   An FPA detector acts as an array of individual MCT detectors aligned in 

a configuration similar to a charge coupled device (CCD) camera; each element of the detector 

acts as one pixel in an IR image and contains an entire mid-IR spectrum.  The second is the 

extraction of a large swath (320 mrad × 27 mrad of radiation) of radiation from a dedicated  

bending magnet that permits a homogeneous widefield illumination (approximately 40×40 m2) 

of the FPA detector.  In conventional synchrotron-based imaging, the SNR/spatial 

resolution/acquisition time tradeoff becomes prohibitive of acquiring IR data at high spatial 

resolution with practical SNR.  Thermal sources coupled to FPA detectors, on the other hand, 

allow for rapid acquisition of large areas, but the large emittance of the source limits the amount 

of light that can be focused onto a given area.  As a direct result of the high emittance, thermal 

sources can only effectively illuminate FPA detectors with effective geometric pixel sizes of ≥ 

5×5m2 while still achieving reasonable SNR.  In contrast, IRENI uses 12 low-emittance 

synchrotron beams, whose brightness are ≈ 100 times that of a conventional thermal source, to 

illuminate an FPA detector with an effective pixel size approximately one-tenth the value that is 

achievable with a thermal source. 

 A schematic of the beamline design of IRENI is shown in Fig. 2.2.  The homogenous 

illumination of the detector is achieved by extracting a large swath of radiation from a dedicated 

bending magnet.  The bending magnet source is coupled to an ultra-high vacuum (UHV) 

chamber containing 24 mirrors.  The fan of radiation is extracted from the bending magnet 

source and projected onto 12 torroidal mirrors (denoted M1) which divide the swath into 12 

independent synchrotron beams and focus the 12 beams onto 12 flat mirrors (M2).  These 12 flat 

mirrors then direct the beam through 12 ZnSe windows that isolate the UHV chamber from the 
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ambient environment and onto 12 parabolloidal mirrors (M3). The parabolloidal mirrors redirect 

and refocus the diverging beams to onto a final set of 12 flat mirrors (M4).  The flat mirrors 

direct the beams into a Bruker Vertex 70 Fourier transform spectrometer.  After exiting the 

spectrometer, the beams directed into a Bruker Hyperion 3000 IR microscope.  The beams are 

slightly defocused at the sample plane  using a condenser lens with a numerical aperture (NA)  

matching that of the objective lens.  Two objective lenses are routinely used:  a 74× (NA=0.65) 

and a 36× (NA=0.5).  Due to the higher NA of the former, a higher spatial resolution is achieved 

and it is thus the lens of choice for most applications, but the 36× is more desirable for certain 

applications due to its larger working distance.  While the 74× objective has a working distance 

of only 1 mm, the 36× has a working distance of several cm, and is thus optimal for applications 

which require greater flexibility in sample height, such as tomography.   

   

 

Figure 2.2:  IRENI Schematic.  A)  IRENI Optical arrangement showing mirrors which direct the beam 
path from the bending magnet, to the spectrometer, through the condensing Schwarzschild, onto the 
sample, through the objective and onto the detector.  B)  Defocused illumination of the IR beams onto the 
FPA detector.  C)  Conventional image of the visible portion of the focused synchrotron beams. D) 
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visualization of the beam path through the M3 and M4 mirrors by a time-lapse photo generated by 
scattering the visible portion of the beams. From [9]. 

 

Based on the optics of the 74× objective, the effective geometric pixel size at the sample 

plane is 0.54×0.54 m2.  The requirement for diffraction-limited spatial resolution follows from 

the criterion set by Stelzer,[13] which requires that to reach diffraction-limited spatial resolution 

for a given optical setup, each Airy disc must be sampled by at least 8 pixels.  The size of the 

conventional Airy disc for unobstructed apertures is: 

݀ ൌ  (2.9)   ܣܰ/ߣ1.22

For the shortest wavelength in the mid-IR (2.5 m), the Stelzer criterion then says that 

diffraction-limited resolution is obtained by sampling with a pixel size no greater than 0.59 m, 

which is safely above the 0.54m pixel sized used for the 74× (0.65 NA) objective.  In contrast, 

the optical arrangement using the 36× (NA=0.5) objective has an effective pixel size of 1.1m 

and is diffraction-limited only below 2700 cm-1.  These relationships between NA, pixelization, 

and spatial resolution are discussed in detail in Chapter 3.      

2.2.2 Detectors 

 The two detectors are routinely used at IRENI are both mercury cadmium telluride 

(MCT) detectors.  MCT is an alloy of HgTe and CdTe and falls under the category of quantum 

detectors [8] which are sensitive to the IR by a photoconductivity mechanism.  MCT has a 

variable band gap based on the relative ratios of the constituent materials; with the right 

stoichiometry, MCT can have a band gap in the far IR region.  This produces IR active 

excitations between the valence and conduction bands that excite carriers that can contribute to 

DC conduction and therefore produce a measureable response to IR light.  Based on this 
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mechanism and the low band gap required for the IR sensitivity, there are an appreciable number 

of thermally excited carriers at room temperature that preclude any meaningful sensitivity.  

Consequently, the detectors are operated at liquid nitrogen temperatures to maintain their 

sensitivity. 

 The first detector, which is most desirable for imaging applications, is the FPA detector.  

The FPA is effectively an array of MCT detectors that acts as a spectrally-resolved CCD camera.  

The physical size of each detector element (pixel) is 40×40 m2 and operates in the spectral 

range 5400-850 cm-1.  In addition to the FPA detector, the beamline is also equipped with a 

single-element MCT detector.  The advantage of this detector is that, while it does not afford the 

high spatial resolution of the FPA, it has better SNR characteristics for individual spectra since it 

averages over a much larger area than a single element in the FPA.  The single element detector 

also has the advantage of being able to probe a broader spectral range; with the right choice of 

beamsplitter, it functions between 650-14000 cm-1. 

2.2.3 Measurement Geometries 

Two experimental geometries with contrasting strengths were employed in this work.  The first 

geometry is the normal incidence transmission (NIT) setup, depicted schematically in Fig. 2.3.  

In this experiment, the IR beam is focused onto a sample by a Schwarzschild objective that acts 

as a condenser lens with a NA that is matched to that of the objective.  The sample is illuminated 

by a cone of radiation, with the effective range of incident angles determined by the NA of the 

condenser.  The beam that is transmitted through the sample is then focused by the objective 

Schwarzschild and finally projected onto the detector.   
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Fig. 2.3:  Schematic diagram of the NIT measurement geometry 

The illumination of the sample in the NIT geometry by a cone of radiation can be either desirable 

or undesirable depending on the application.  For studying homogeneous samples, this is 

effectively irrelevant; however, for studying non-isotropic samples, there is not a well-defined 

polarization of the incident beam.  While the majority of the radiation is polarized within the 

plane of the sample, a fraction of the radiation has components perpendicular to the sample as 

well.  Thus for determining the orientation of functional groups on or in a sample, the NIT 

geometry provides less definitive information than the GIR geometry discussed below.  On the 

other hand, for studying adsorption of molecules on  surfaces, having both components of the 

polarization allows for the detection of all vibrational modes both parallel and perpendicular to 

the surface (in the absence of the metal surface selection rule).   

 In contrast, the grazing incidence reflection (GIR) geometry allows for measurements 

with a well-defined incident polarization.  The general approach of this geometry is shown in 

Fig. 2.4A.  A 15× grazing angle objective (GAO) is designed for the Hyperion 3000 microscope.  

The objective focuses the beam onto the sample at an angle of incidence of approximately 84°.  

The beam reflects off of the sample surface, and is then refocused back onto the sample surface 

by another mirror, such that a double-pass measurement is made.  The polarization of the 
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incident beam is controlled to be entirely parallel to the plane of incidence (p-polarization).  The 

advantage of this polarization is that, due to the phase change upon reflection, the incident and 

reflected beams form a standing wave where the field components perpendicular to the surface 

are added constructively and parallel to the surface destructively.  The measurement then 

selectively probes excitations that produce a dynamical dipole moment perpendicular to the 

reflecting surface.  A schematic of the GAO in grazing operation mode is shown in Fig. 2.4B.   

 

Fig. 2.4:  A) Schematic of the GIR experimental setup.  The polarization of the incident beam is within 
the plane of incidence, allowing for a well defined polarization normal to the reflecting surface.  B) 
Schematic diagram of the GAO (provided by Bruker Optics).  

 

2.2.4 In situ Spectromicroscopy 

In situ IR Spectromicroscopy is performed using a custom flow cell that allows for IR 

measurements during exposure of the sample to gas or liquid flow [14].  In contrast to 

conventional surface science experiments, the measurements are performed under ambient 

atmospheric pressure, as such conditions are most closely aligned with actual sensing 

applications.  The flow cell has a versatile design, allowing for measurements ranging from 
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living cells in liquid media to gas adsorption on solid films.  A schematic diagram of the flow 

cell is shown in Fig. 2.5A-B with a photograph of the assembled device in Fig. 2.5C.  The 

windows of the flow cell are IR transparent diamond cylindrical single crystals of 3 mm diameter 

and approximately 0.3 mm height that are embedded into 32 mm silicon or titanium wafer.  In a 

typical experiment, the sample is deposited onto either the top or the bottom window of the flow 

cell prior to assembly.  The base of the flow cell contains metal input and output tube that are 

connected to leur lock adaptors that interface with conventional plastic tubing.  A rubber seal 

with holes for the input and output of the flow is placed between the base of the flow cell and the 

bottom window.  Next, the top and bottom wafers are assembled as in 2.5A and separated by a 

Teflon spacer.  A final seal is placed on the outside of the top window before the lid is screwed 

on.  This flow cell is placed in the microscope, which is isolated and purged with a dry nitrogen 

source.  In practice, the experiments are performed by first purging the flow cell with nitrogen to 

remove atmospheric components from the flow cell and tubes.  Then, spectra and IR images of 

the sample are recorded prior to exposure.  A background or reference spectrum is taken at the 

measurement position on the sample before the target gases are introduced to the cell. Then a 

controlled flow rate of the target gas is introduced using a mass flow controller connected to the 

input tube of the flow cell while differential transmission spectra are recorded.  The output tube 

of the flow cell is connected to an external exhaust system that pumps on the flow cell to mimic 

a very weak vacuum environment.  Typically, these measurements are performed in transmission 

mode.  The relatively low thickness of the samples allows for sufficient transmitted intensity 

despite the continuum of substrate absorption over the entire MIR region.  Importantly, the 

samples are illuminated with a cone of radiation (usually the NA=0.65) such that vibrations 

whose dynamical dipole moments both parallel and perpendicular to the surface are excited.   



www.manaraa.com

29 
 

 

Fig. 2.5:  A,B) Schematic diagrams of the flow cell and its components, C) Photograph of the assembled 
flow cell.  From [14].   
 

2.3 Transmission Electron Microscopy 

Transmission electron microscopy (TEM) has become a workhoarse of materials 

characterization, particularly in nanoscience.  In a typical TEM experiment, electrons are 

accelerated to voltages that are typically 200-400 keV.  The relativistic DeBroglie electron 

wavelength for an accelerating voltage of 300 keV (that used in this work) is 1.97 pm.  Thus, the 

diffraction limit which plagues the long wavelength IR microscopy experiments is virtually 

nonexistent in TEM imaging, allowing for nanometer length scales to be explored at atomic 

resolution.  Contrary to optical microscopy, however, the limiting factor in the spatial resolution 

in conventional TEMs is the lens aberrations, not diffraction effects.  Even without the advent of 

aberration-correction, however, atomic resolution imaging in the TEM has become routine (high-

resolution TEM or HRTEM).  This capability coupled with the additional features of micro and 

nanodiffraction and electron spectroscopy have made TEM the single most widely utilized 

technique in the characterization of nanomaterials.  In the proceeding sections [15], I will discuss 
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the aspects and techniques in TEM that are the most significant for the work done here. 

 

2.3.1 Optics in the TEM 

Figs. 2.6-2.7 shows a schematic diagram of the optical arrangement inside of the TEM.  The 

source of electrons, the electron gun, is at the top of the column.  In the Hitachi H900 NAR used 

in this work, the electron gun is a LaB6 filament that operates through thermoelectronic emission.  

The operation principle is described by the Richardson Law, which states the relationship 

between the current density from the electron source, the operating temperature, and the work 

function of the material is given by [15] 

ܬ ൌ  ଶ݁ି஍/୩T (2.10)ܶܣ

where J is the current density, T is the temperature, k is the Boltzmann constant,  the work 

function, and A is the Richardson constant of the material.  For the case of the LaB6, the work 

function is 2.4 eV and the effective operating temperature is 1700 K.  For LaB6 electron guns, 

the LaB6 crystal itself is used as the cathode in the electron gun to accelerate the electrons.  

Below the source is the Wehnelt cylinder situated above an anode plate with a hole in it, which 

together create a controllable beam of electrons in the following way: when a negative bias is 

applied to the Wehnelt cylinder, the electron beam is converged to “crossover”, allowing for 

optimum brightness in a small source size to be transmitted through the hole in the anode.   

 After transmitting through the anode, the electron beam diverges along the optic axis and 

is refocused by two condenser lenses whose purpose is to create a parallel beam of electrons 

incident on the sample.  The condenser aperture allows the user to have control over the electron 

beam size.  The last lens used to illuminate the sample is called the condenser/objective lens and 

allows for control of the beam convergence onto the sample.  Thus, the sample is illuminated 
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with either a parallel or convergent electron beam, which is transmitted through and focused by 

the objective lens.  A ray diagram of the optical paths taken following the specimen are shown in 

Fig. 2.7.  Below the objective are two apertures, the objective aperture and the selected area 

aperture, located respectively at the back focal plane and the image plane; these are further 

discussed in the following sections.  As the electron beam is focused by the objective lens, the 

diffraction pattern generated by the scattered electrons is formed in the back focal plane (BFP) of 

the objective.  This can be seen in Fig. 2.7 by noticing that all of the rays scattered at the same 

angle are focused to the same point in the BFP of the objective.  Lastly, the intermediate and 

projector lenses refocus and project images and diffraction patterns onto the viewing screen.     

 

 

Fig. 2.6:  Schematic diagram of the primary electron optical components in the TEM 
illumination.  From [15] 
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Fig. 2.7: Ray diagram showing image formation and optical paths taken in imaging and 
diffraction modes after the specimen.  From [15] 
 

2.3.2 Bright-Field TEM 

 Bright-field TEM (BFTEM) is the primary technique used to image and characterize the 

size, shape and morphology of a sample.  The principle behind BFTEM imaging is shown in Fig. 

2.7.  After the electron beam passes through the sample, the scattered and transmitted electrons 

are focused by the objective lens.  The electrons that scatter with the same angle with respect to 

the optic axis are focused to the same point in the BFP.  To obtain a BFTEM image, an objective 
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aperture is placed at the BFP of the objective to block the scattered electrons, allowing only the 

transmitted electrons to pass through.  The transmitted beam is then magnified and projected 

onto the viewing screen or ccd camera.  The blocking of the scattered/diffracted electrons is what 

creates contrast in the resulting BFTEM images; the strength of the scattering by the sample is 

indicated by the number of counts on the viewing screen, causing scattering objects in the sample 

to appear dark.  The more electrons that are scattered by the sample, the darker the contrast in the 

observed image.  The principle behind dark-field TEM (DFTEM) imaging is essentially the 

same; the only difference is that the objective aperture is chosen to select the scattered/diffracted 

electrons rather than the transmitted beam.  In this mode of operation, the scattering objects 

produce bright contrast in the resulting image, relative to a dark background.        

 

2.2.3 Selected Area Diffraction 

 Selected area diffraction (SAD), also known sometimes as transmission high-energy 

electron diffraction (THEED), allows for characterization of the crystal structure of a specimen.  

The primary utility of SAD as compared to diffraction techniques performed outside of a 

microscope is the ability to collect diffraction patterns from sub-micrometer areas that can also 

be characterized subsequently using the various imaging and spectroscopic methods available in 

a TEM.  The principle of SAD is shown in Fig. 2.7.  The beam is spread over the sample to 

achieve a plane-wave illumination.  As before, the electron beam is transmitted through the 

sample and focused by the objective lens.  In this case, though, the selected area aperture is 

inserted at the image plane of the objective lens, rather than the BFP.  In this way, only a certain 

effective area is allowed to transmit through to the intermediate lens.  The current in the 

intermediate lens is adjusted in diffraction mode to have the BFP immediately before the 
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projector lens.  In the BFP of the intermediate lens, the diffraction pattern is again formed from 

the selected region and focused onto the screen by the projector lens. 

 SAD patterns are formed based on the scattering and interference of the wavefunctions of 

the incident electron beam.  The resulting diffraction pattern provides information that is 

analogous to x-ray diffraction patters.  Based on the wavelength of the incident beam, the 

scattering from a given crystallographic plane is determined by the Bragg Law:  

ߣ݊ ൌ  (2.11)           ߠ݊݅ݏ2݀

where n is the order of the reflection,  is the wavelength, d the interplanar spacing and  is the 

scattering angle.  The interplanar lattice spacing for a given plane denoted by the Miller indices 

(h,k,l) is related to the lattice constant; for example, for a cubic material the lattice spacing dhkl 

for a crystallographic plane is given be 

݀௛௞௟ ൌ
௔మ

√௛మା௞మା௟మ
,  (2.12)  

where a is the lattice constant.  In the case of the slightly more complicated hexagonal lattice 

structure, the interplanar spacing of a plane (h,k,l) is given by 

݀௛௞௟ ൌ
௔మ

ඥସ/ଷሺ௛మା௞మା௛௞ሻାሺ௖/௔ሻమ௟మ
,  (2.13) 

where a is the in-plane lattice constant and c the out-of-plane lattice constant.   

So in principle, the SAD pattern of a material yields lattice spacings that can be correlated to its 

crystal symmetry and structure.  In the most optimal conditions, Direct methods [16] can be 

applied to determine the phases of the Bragg beams and reconstruct the projected potentials.  In 

more realistic circumstances, for example, a single-crystal sample is not available or a material is 

disordered or nonstoichiometric (e.g., Chapter 4), the SAD pattern can still provide a valuable 

measure of the periodicity of the crystal lattice.   
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2.2.4 High Resolution TEM 

 High resolution TEM (HRTEM) exploits the wave properties of electrons to generate an 

image detailing information on the crystal structure of a crystalline sample.  In brief, HRTEM 

involves imaging at very high magnifications without any apertures below the sample.  The 

imaging characteristics of the objective lens then modify the electron wavefront in such a way 

that the phase and amplitude information are mixed with one another through the action of the 

transfer function of the microscope.  The interference between the transmitted and diffracted 

beams from the sample leads to an image containing lattice fringes, or interference patterns 

whose periodicity represents that of the planes in the crystal lattice.  This lattice-fringe imaging 

provides atomic resolution images of the crystal lattice(s) of the sample on the nanometer scale.  

In general, data collected this way produce images in which regions of dark contrast are 

representative of the positions of the atoms.  The data are most commonly analyzed by taking the 

Fourier transform of the HRTEM images to produce a “diffractogram”.  Diffractograms can be 

analyzed in a manner analogous to a single crystal diffraction pattern to obtain the spacings and 

angles of the planes in the crystal lattice.  Periodic features in the HRTEM images produce spots 

or rings in the diffractogram with a spatial frequency equal to the inverse of the interplanar 

lattice spacing. 

2.3.5 Energy Dispersive X-Ray Spectroscopy 

Energy dispersive x-ray spectroscopy (EDS or EDX) is a spectroscopic technique performed in 

the TEM (or SEM) for the purpose of identifying the elemental components of a sample and their 

relative quantities.  The excitation mechanism behind the principle of EDS occurs constantly.  

When a high energy electron is incident upon atoms in a solid, a number of types of excitations 

can occur; the process relevant to EDS involves a core-level ionization.  In this process, the 
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energy of the incident electron beam excites a core level electron out of the solid, leaving behind 

a hole.  An energy from a higher occupied electron state than falls into the hole state, emitting an 

x-ray of the energy between the two levels.  The allowed transitions between the core level states 

and the outer shell states are unique to each atom, providing a distinctive fingerprint of the 

elements being sampled.  In practice, the measurement is performed by focusing the electron 

beam onto a small spot on the sample and tilting the sample toward the detector.   

2.3.6 In situ Microscopy and Diffraction 

In situ TEM and SAD experiments are used to probe the crystal structure of graphene oxide 

during thermal reduction.  In these experiments, a commercial single-tilt heating holder is used to 

anneal the sample inside of the TEM.  A schematic of the Gatan single-tilt heating holder is 

shown in Fig. 2.8.  The holder uses a tantalum furnace with a thermocouple to control and 

monitor the temperature of the sample during heating.  The time and temperature dependence of 

the structure of the sample is determined by recording the SAD pattern of the sample as a 

function of time.  The Gatan Orius SC CCD camera permits the collection of TEM movies, and 

thus the evolution of the diffraction data as a function of time and/or temperature can be recorded 

as a movie.   
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Fig. 2.8 Schematic diagram of the Gatan single-tilt heating holder (provided from Gatan 

website).   
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Chapter 3:  Toward Optimal Spatial Resolution in IR 

Spectromicroscopy with Synchrotron Radiation 

 

The imaging performance of the IR beamline IRENI has been evaluated.  Measurements of the 

point-spread-function (PSF) have been performed to understand the response of the imaging 

system over a broadband frequency range.  The spatial resolution of the raw data that is 

achievable with this experimental approach for different IR wavelengths has been determined by 

the measurements of a number of test samples. As a step toward achieving optimal spatial 

resolution in IR spectromicroscopy, methods have been developed to deconvolute the measured 

PSF from IR hyperspectral data sets over the entire mid-IR region.  Several examples have been 

selected to explore the relationships between numerical aperture, pixelization, deconvolution, 

and spatial resolution.      
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3.1 Introduction 

 Fourier Transform Infrared (FTIR) microspectroscopy is a powerful technique for label-

free chemical imaging that has supplied important chemical information about heterogeneous 

samples for many problems across a variety of disciplines.[1-6]  State-of-the-art synchrotron 

based infrared (IR) microspectrometers can yield high-resolution images, but are truly diffraction 

limited for only a small spectral range.  Furthermore, a fundamental trade-off exists between the 

number of pixels, acquisition time and the signal-to-noise ratio, limiting the applicability of the 

technique. The recently commissioned infrared synchrotron beamline, Infrared Environmental 

Imaging (IRENI), [7] overcomes this trade off and delivers 4096-pixel diffraction limited IR 

images with high signal-to-noise ratio in under a minute. The spatial oversampling for all mid-IR 

wavelengths makes the IRENI data ideal for spatial image restoration techniques. Here, we 

measured and fitted wavelength-dependent point-spread-functions (PSFs) at IRENI for a 74x 

objective between the sample plane and detector. Noise-free wavelength-dependent theoretical 

PSFs are deconvoluted from images generated from narrow bandwidths (4 cm-1) over the entire 

mid-infrared range (4000 – 900 cm-1) using a Fourier filtering-based approach.  The stack of 

restored images is used to reconstruct the spectra.   

3.2 Spatial Resolution 

 Many factors impact the spatial resolution of an imaging system.  As microscopy is 

performed at increasingly smaller length scales, the probing wavelength limits the obtainable 

resolution by the so-called diffraction limit.  The diffraction limit arises because of the finite NA 

of an imaging system, i.e., the limited angular region from which the objective can collect the 

light from the object being imaged.  Consequently, imaging a point source of radiation with a 
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finite objective results in a blurring of the point within the resulting image; i.e., the point spread 

function (PSF).  When the distance between the observation point of the measurement is much 

greater than the object being imaged, diffraction effects become relevant, and the blurring of the 

point source can be considered physically as arising from diffraction of the plane waves radiating 

from the source from the aperture of the objective.  The physical characteristics of the PSF 

determine the resolution of the resulting images generated from the optical system since each 

object being imaged is in essence a superposition of point sources.  This is equivalent to saying 

that the measured image is a convolution of the true image with the PSF [8],  

 (3.1) 

The so-called "Rayleigh Criterion" frames the resolution of the optical system within the 

characteristics of the PSF.  The Rayleigh Criterion states that the lowest achievable resolution 

corresponds to the point at which the central maximimum of one PSF overlaps with the first 

zero-crossing of another PSF.  For conventional lenses, this requirement can be recast into an 

equation for the resolution achievable with a given objective; however, for obstructed 

Schwarzchild objectives used in this work there is no closed form analog.  Rather, the contrast 

difference for conventional lenses is used as the standard for resolution; [9] specifically, for 

conventional lenses the contrast difference for two PSFs at the Rayleigh criterion is exactly 

26.4%.  This is the so-called Stelzer or contrast resolution criterion.  In this work, two objects are 

considered resolved if the contrast difference between them is ≥ 26.4%.    

As the obtainable resolution is directly related to the characteristics of the PSF, 

understanding data from IRENI critically depends on understanding the PSF of the microscope 

used.  As a model for the PSF, the image formation is considered in terms of Kirchoff's scalar 

PSFII truemeas 
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diffraction theory.  The object is treated as a radiating point source at the sample plane; the 

source is considered sufficiently far from the focusing objective that the spherical waves 

emanating from the point source are approximately plane waves.   The conventional treatment of 

plane wave illumination of a circular aperture is shown in Fig. 3.2 [8].  The Kirchoff integral for 

the electric field at the observation point P is given by [8]: 

෨ܧ ൌ ሻࡾ࢑ష࢚ሺ࣓࢏ࢋಲࢿ

ࡾ
׬ ׬ ߶݀ ߩ݀ߩ ሽ߶ݏ݋ሻܴܿ/ݍߩሼ݅ሺ݇݌ݔ݁

ଶగ
଴

௔
଴   (3.2) 

Where A is the electric field amplitude,  is the radial coordinate of the aperture, R is the 

distance from the center of the aperture to the observation point, k is the wavenumber and  is  

 

Fig. 3.1: Diffraction from a circular aperture.  From [8]. 

the angular coordinate of the aperture.  Evaluation of the angular integral using the definition of 

the Bessel function gives ultimately gives: 

෨ܧ ൌ ሻࡾ࢑ష࢚ሺ࣓࢏ࢋಲࢿ

ࡾ
ߨ2 ׬ ሻ௔ߩ݀ߩ ሻܴ/ݍߩ଴ሺ݇ܬ

଴   (3.3) 
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For the case of the Schwarzschild optic, the secondary mirror obscures the beam path leading to 

an effectively annular aperture.  Thus equation 3.3 is modified by placing a lower bound on the 

integral.  For inner radius r1 and outer radius r2, the result of 3.3 reduces to: 

෨ܧ ן
௃భሺೖೝమ೜

ೃ
ሻ

௞௥మ௤/ோ
െ

௃భሺೖೝభ೜
ೃ

ሻ

௞௥భ௤/ோ
   (3.4) 

so that the light intensity is 
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Thus the intensity distribution of the PSF can effectively be described by 3 parameters specific to 

the imaging optic:  the inner and outer radii of the annular objective and the distance between the 

plane of the annulus to the plane at which the image is formed.  A more convenient form of (3.5) 

recasts these three variables into the ratio of the inner to outer radii, , and the angular position at 

the image plane with respect to the optical axis, : 

     (3.6) 

where  .  Since this objective is a three-dimensional object, and the obscuration due 

to the secondary mirror is not coplanar with the image plane, there are small deviations from this 

ideal theory that are wavelength dependent.  They are absorbed into an “effective r1 ” as 

described below.  

 The PSF of IRENI is measured by measuring the transmission through a 2 m pinhole at 

the sample plane, yielding images of the PSF from 1500-4000 cm-1.  Next, to obtain noise-free 
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idealized PSFs, the measured data is fit by a model described by a variant of eq. 3.6.  In practice, 

when characterizing the wavelength-dependence of the PSF, d and r2 are fixed to their known 

physical dimensions, and the trend for the effective size of the obscuration (effective r1) is 

obtained by fitting the measured data to a function describing an annular diffraction pattern over 

a range of wavelengths.  Deviations from the ideal annulus model, such as the optical path 

differences introduced from the curvature of the primary optic, are absorbed into the effective 

obscuring mirror radius ( effective r1) in the annular model.  The obscuring mirror amplifies the 

intensity of the diffraction maxima in the PSF, while narrowing the central maximum as 

compared to the conventional Airy function.[10, 11]  Fig. 3.2A shows the measured PSFs for a 

74 objective lens on the Bruker Hyperion IR microscope, as observed at 3 different locations in 

the field of view at three different wavelengths.  The overall similarity of the PSF across the field 

of view indicates that the PSF is shift invariant; as expected a broadening is observed with 

increasing wavelength.  A comparison of the PSFs simulated by reproducing eq. 3.6 using the 

values obtained from the fits with the measurement is shown in Fig. 3.2B for 3 different 

frequencies.  The data are center profiles through the experimental and simulated PSFs.   
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Fig. 3.2:  A) Measured PSFs observed at 3 different frequencies and 3 different locations in the field of 
view.  B)  Comparison of center profiles from measured and simulated PSFs at 3 different frequencies.  
From ref [12]. 

 

The PSF of the 36× (NA=0.5) objective was characterized as well; the significance of this lower 

magnification objective is its utilization in tomography experiments.  The much larger working 

distance of this objective makes it possible to rotate a sample of finite dimension without 

interfering with the objective; furthermore, the lower NA is more similar to plane wave 

illumination assumed in the reconstruction algorithms.  A comparison between measured and 

fitted PSFs for the two objectives is show in Fig. 3.3.  As can be seen from the center profiles, 

the lower NA of the 36× results in a larger spatial extent of the PSF in addition to the coarser 

sampling (1.1 m geometric pixel size at the sample plane). 
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Fig. 3.3:   Comparison of measured and fitted PSFs for the two objectives.  A-F) 74×  (NA=0.65) PSFs, 
G-L) 36× (NA=0.5) PSFs 

 

3.3 Hyperspectral Deconvolution 

For the IR imaging community, it has long been a goal to perform spatial and spectral 

deconvolution of hyperspectral cubes.  The problem of deconvolution is substantially more 

complicated for IR data than for conventional visible microscopy due to the broadband nature of 

the data.  The PSF is strongly dependent on wavelength, and every image in the hyperspectral 

cube needs to be reconstructed such that the resulting spectra at each pixel are reasonable and 

faithful.  Other approaches to deconvolution of IR hyperspectral data sets [13] have applied the 

well-known method of Fourier Self-Deconvolution (FSD) to the spectral domain as well as the 
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spatial domain.  These methods, implemented in commercial software packages, deconvolute 

arbitrary (user-defined) Lorentzian lineshapes from the spectra, as well as from the two 

dimensional images in the hyperspectral cube.  The fundamental difference in the method 

presented here is that this work has focused on deconvolving a PSF which truly represents the 

response of the imaging system to a point light source and thus correctly describes the 

mechanism of image formation.  No deconvolution is applied in the spectral domain.  Rather, a 

two-dimensional restoration method is applied to an IR image at every wavelength which is then 

scaled as described below. Then these images are reassembled into a hyperspectral cube, from 

which the reconstructed spectra are extracted.  The approach taken for the deconvolution is as 

follows:  the measured image is assumed to be a convolution of the true image and the PSF (Eq. 

3.1).  The true image is then recovered through Fourier inversion:   

 (3.6) 

The term in the denominator is the Fourier transform of the PSF, or the optical transfer function 

(OTF).  Any discrete image, I(x), may be decomposed into an infinite series of complex 

exponentials: 

 (3.7) 

where q is the Fourier-space coordinate or spatial frequency and x is the real-space coordinate.  

The coefficients Iq are given by the discrete Fourier Transform (FT): 

 (3.8) 
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The PSF, P(x) may be expressed as a Fourier series just as the image in (3.8): 

 (3.9) 

Each Iq determines the extent to which a given spatial frequency q contributes to the image.   

In terms of the Fourier components Iq and Pq of the image and PSF, respectively, the true image 

may be obtained by combining (2.7-9):   

    (3.10) 

 Thus the approximate solution for the "true" image is given by (3.10).  While this 

problem is commonly encountered in Fourier analysis, the direct solution for the true image 

becomes intractable due to the fact that the OTF approaches zero at high spatial frequencies (i.e., 
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reconstructed image.  The filter is brought continuously to zero by a smoothly varying function, 

so that spatial frequencies at which the OTF is nearly zero are not included in the reconstructed 
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sophisticated methods which implement an iterative, variational or statistical approach are 

subject to long computation times and user subjectivity; however, they do not employ a low-pass 

filter and therefore  do not involve an inherent loss in high spatial frequency components in the 

image.  

 The approach taken is as follows:  to avoid ringing artifacts at the image boundaries, the 

image was placed in an array with the original image in the center and additional images 

reflected about each axis on the edges before applying the FT ("reflexive" boundary 

conditions[14]).  A Hanning apodization kernel of the following form was applied to the Fourier 

data:             (3.11) 

Here k is the radial coordinate in the Fourier domain, kmax is the cutoff frequency, where the OTF 

approaches zero, and kmin is an effective smoothing parameter.  The Hanning function is equal to 

1 for all frequencies less than kmin and is equal to 0 for frequencies greater than kmax.   At 

frequencies between kmin and kmax, the filter smoothly approaches  zero by using a function with 

a sinusoidal dependence. Ringing artifacts associated with discontinuities in the image are 

mitigated by smoothly approaching zero,  kmin is chosen to optimize image sharpness and 

suppress edge-ringing artifacts that could arise from the discrete FT.  Universally acceptable 

values for the parameters kmax and kmin were determined empirically over a wide spectral range 

using a four-step process.  First, a phantom test image was blurred by the known PSF. Second, 

the deconvolution routine was applied with different kmin and kmax values and the optimal choices 
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for the two parameters were inferred based on the fidelity of the resulting images.  Third, the 

second step was repeated for images spanning the entire mid-IR spectral range to establish 

variation of the parameters as a function of wavelength.  Fourth, a polynomial curve was fitted to 

the wavelength-dependent kmin and kmax values. The latter depend only on the PSF, and are thus 

generally applicable to all spectrochemical data sets.    

  Importantly, due to the normalization convention used for the PSFs, the resulting images 

will have arbitrary absorption intensity scales. Since it is important to recover meaningful spectra 

from the deconvoluted hyperspectral cube of data, the arbitrary scaling is compensated for in 

each deconvoluted image. To find the correct scaling, the zero-frequency component in the FT of 

the original and deconvoluted images at a given wavelength are required to be equal, modifying 

2.11 as:   

    (3.12). 

Next, the total transmitted light reaching the detector is required to be equal for both the original 

and deconvoluted images.  In practice this latter correction was a small contribution to the results 

from (2.13).  This scaling leads to high-quality, faithful, and chemically meaningful spectra.  The 

OTF of the measured PSF is shown in Fig. 2.2.3.1 for 2 different wavelengths with the 

appropriate Hanning apodization kernels overlaid.  As can be seen from the image, the spatial 

frequencies in which the OTF has appreciable intensity correspond to the Hanning filter being 

equal to one.  The filter then smoothly approaches zero in the vicinity of the frequencies for 

which the OTF approaches zero.    
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Fig. 3.4:  Real part of the OTF overlaid with the Hanning apodization kernel for 2 different frequencies. 
From [12] 
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3.4 Evaluating the Deconvolution Method 

As a demonstration of the deconvolution method, several applications are considered. United 

States Air Force (USAF) targets have proven to be an effective tool for probing spatial resolution 

in infrared microspectroscopy[15, 16].  The targets consist of chrome strips of various sizes 

evaporated onto glass; the chrome constitutes an absorbing object on a transparent substrate for 

frequencies above 2500 cm-1, below which point the glass also becomes opaque to IR light.  

Group 7 elements 4-6 and groups 8 and 9 with pitches of 228 and 256-645 line pairs/mm, 

respectively, were imaged.  These correspond to chrome strips that are, respectively, 2.2 and 1.95 

– 0.775 μm wide, separated by the same distance.  Hybrid polymer structures were constructed to 

test the preservation of spectral features following the deconvolution process.    Polystyrene (PS) 

beads, with diameters of 1, 2 and 6 μm, were mixed in solution with polyurethane (PU).  A 10-

μm layer of the PU/PS bead solution was spin-coated onto a glass slide.  The films were removed 

and mounted free-standing on stainless steel washers.  Finally, in order to evaluate the suitability 

of this method for real-life heterogeneous samples, the deconvolution algorithm was also applied 

to  IRENI spectrochemical images acquired from a cryosectioned mouse retina mounted on a 

BaF2 window. Sample preparation and data collection protocols are reported elsewhere [17].   

 As a first consideration on the improvement in resolution following deconvolution, the 

USAF targets are shown before and after deconvolution in Fig. 3.5.  These images represent the 

raw IR absorbance of the 3-bar USAF targets for groups 8-9 (256–645 cycles / mm) at two 

different wavelengths: 2.63m (3,800 cm-1) and 3.70 m (2,700 cm-1), respectively.  Images in 

Fig. 2.7 C-D show the patterns from (A) and (B) after deconvolution with measurement-based 

PSFs. Line profiles (Fig. 2.7 E-H) have been extracted from along the dashed lines in Fig. 2.7. 
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A-D  to demonstrate the improvement in contrast and resolution following application of the 

deconvolution algorithm to these single wavelength IR images.  The pairs of dashed gray lines in  

 

Figure 3.5:  Transmission images of a high-resolution 1951 USAF test target.  Panels A) and B)  show 
unprocessed images in transmittance at a wavelengths of 2.63m (3,800 cm-1) and 3.70 m (2,700 cm-1), 
respectively.  Panels C) and D) show the same patterns after deconvolution with the measurement-based 
PSFs (see text). Intensity profiles extracted along the dashed lines in (A-D) are shown in (E-H); green = 
original, blue = deconvoluted.  White scale bar in a: 10 m.  From [7]  
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Fig. 3.5 E-H define a contrast range of 26.4%, corresponding to the Rayleigh resolution limit.  

Analysis of the line profiles indicates that this imaging system exceeds the theoretical Rayleigh 

resolution (2.47 m and 3.48 m for A and B, respectively, since the 1.74 m pattern is clearly 

resolved (contrast=30.7%) in (A), as is the 1.95 m pattern (contrast=29.1%) in B); while the 

1.55 m pattern in A) is almost resolved (contrast=23.8%. The resolution improvement upon 

deconvolution with the instrument's PSF is clearly apparent in the images and in the line profiles.  

The contrast of the patterns with a width of 1.38 m increases from 14.1% (unresolved) in A) to 

30.9% (resolved) in C), and from 13.7% (unresolved) in B) to 40.2% (resolved) in D), 

respectively. 

 Naturally, the effects of blurring due to sampling beyond the diffraction limit are 

manifested in the spectra and in spectrochemical images, as illustrated in the analysis of a 

chemical image of the PS/PU mixed sample, Fig. 3.6.  Closely spaced 5.9 m spheres, as well as 

smaller 1 and 2 m spheres throughout the field of view (schematic in Fig. 3.6), were imaged by 

integrating each spectrum over a PS-specific CH stretching band (3007-3041 cm-1 with same 

baseline), to reveal the location of PS in the PU matrix (Fig. 3.6A).  The PS absorption signal 

observed near the interface of the two central beads should be smaller than the absorption signal 

observed at the centers of the beads, since the optical path length traversed is predominantly 

through PU, and the path length of PS is much smaller near the interface.  Similarly, the optical 

path length through the PU should be reduced at the top of a bead, yet nearly equal amounts of 

PS are detected all across the interface of the two beads.  Fig. 3.6B shows the C-H stretching 

region of spectra taken along the line connecting the two spheres, Reference spectra of PS and 

PU are shown below as red and black, respectively.  In the spectra along the line joining the two 

spheres, there is very little variation in the intensity of the PS-specific bands.  Fig. 3.6C, which 
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shows the variation in the intensity of the PS band at 3026 cm-1, indicates that this value is nearly 

constant along the line.  This is in contrast to the expectation that the PS signal should be 

strongest immediately on top of the spheres, and much weaker in between them.  In addition, the 

intensity of the PU-specific band at 2960 cm-1 remains nearly constant along the line as well.  

These data demonstrate how imaging at the diffraction limit produces IR spectra contaminated 

with signals from neighboring pixels, and concomitantly blurred images. 

 The deconvolution algorithm is applied for every wavelength in this data set, and all of 

the resulting chemical images are reassembled the deconvoluted images in a hyperspectral cube 

to thus produce a reconstructed spectrum for every pixel.  Reconstructed spectra are compared to 

original spectra from the same positions in Fig. 3.6D-E, taken from the PU background and on 

top of a PS bead, respectively.  The reconstructed spectra follow the unprocessed spectra closely, 

maintain all spectral features and show that the deconvolution process does not introduce 

additional artifacts.  The baseline fringes come from multiple reflections in the PU film.  Fig. 

3.6F shows an image generated from the restored data set integrated over the same spectral range 

as that used in Fig. 3.6A for comparison.  Enhanced contrast and a reduction of blurring are 

immediately obvious, particularly evident at the interface of the two beads.  Smaller 1 and 2 m 

beads scattered throughout the field of view  become more apparent.   Fig. 3.6G shows the 

reconstructed spectra taken from the sample pixels used to generate the spectral stack in Fig. 3.6 

F.  While in the original data the absorbance signatures in the spectra from every point along the 

line contain very similar absorption strengths (Fig. 3.6H, green), much stronger variation is 

observed in the restored data set.  These spectra more accurately reflect the expected absorption 

strengths for PS and PU function groups across the interface of the two beads. Moving from the 

left bead to the center of the interface, one observes that the absorption strength detected from 
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the PS decreases as expected, while the absorption strength from the PU is smaller directly at the 

center of the bead, and gradually increases near the center of the interface.  Fig. 3.6H compares 

the absorption strength of the PS band at 3026 cm-1 as a function of position along the indicated 

line for both the original and restored data.  The changes in PS absorption along the line are 

clearly resolved in the deconvoluted data, whereas little change is observed in the raw data.  

Thus, the improvements in spatial resolution are observable not only in the deconvoluted images, 

but also in the faithfulness of the resulting spectra.    

 

Figure 3.6:  Original and Deconvoluted hyperspectral data from 1.0, 2.1, and 5.9 m diameter PS beads 
dispersed in a 10 m thick PU film.   A) unprocessed and F) deconvoluted absorbance images integrated 
over the PS peak at 3020 cm-1 (aromatic CH stretch). Three 5.9 m PS beads are clearly visible, the 
weaker signal in the background stems from several 1.0, 2.1 m PS beads, some of which are out of 
focus. D,E) Comparison of original and reconstructed spectra from the PU background (D) and from one 
of the PS beads (E). F,G) Stacked spectra taken along the black line in A), between the centers of the 5.9 
m PS beads, illustrating the effect of the reconstruction process on the spectra. While the original spectra 
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in F) all show a very similar PS/PU mixture (compare reference spectra on the bottom), the reconstructed 
spectra in G) clearly exhibit the PS–PU–PS transition demonstrating the spatial resolution enhancement in 
the spectra achieved with the deconvolution algorithm.  [12]     

 

The PS/PU composite sample provides a clear and effective demonstration of the power 

of the restoration algorithm; however, much of the material imaged with FTIR is heterogeneous 

and components are distributed in irregular patterns. For example, the retina, a biological tissue 

that is composed of several highly distinct layers, presents an excellent real-world test case for 

evaluating improvements in resolution. In a recent paper [17], high-resolution IRENI images of 

mouse retina tissue were reported.  The deconvolution algorithm is now applied to data from that 

study. The visual signaling pathway through the retina includes three main types of neurons: 

photoreceptors (containing the rods or cones), bipolar cells and ganglion cells, connected 

approximately end to end.  Images and data, before and after deconvolution, are shown for the 

region that includes the photoreceptor nucleus and outer plexiform layers (Figure 3.7).  

The nucleus layer is composed of the nuclear bodies of photoreceptor neurons, while the 

outer plexiform layer is composed of dendrites and synapses. The former layer is therefore rich 

in nucleic acids while the latter, composed primarily of cell membranes, are rich in 

phospholipids.  Typical IRENI spectra extracted from well within each region are shown in 

Figure 3.7A.   The CH stretch peak intensities are much greater in the plexiform layer; the 

polyunsaturated fatty acid (PUFA) peak at 3012 cm-1 and the phospoholipid carbonyl peak at 

1740 cm-1 are also considerably elevated relative to the same bands in the nuclear layer. 

Distinguishing spectral features of the photoreceptor nucleus layer include the appearance of a 

small peak at 1712 cm-1, associated with nucleic acids, and decreased intensity in all 

phospholipid bands. The photoimage of a near-by  section, nuclei stained deep blue with 
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hematoxylin, (Fig. 3.7B) may be compared to the spectrochemical false-color images for the area 

inside the white box, created from the intensity of the 1712 cm-1 nucleic acid  peak, before and 

after the deconvolution process (Fig. 3.7 C,D, respectively). In each case, the image processing 

allows one to distinguish between the layers, but, prior to deconvolution, the sharp demarcation 

between nuclei and axons is blurred by poor spatial resolution. 

 To show the improvement in spectral purity, a stack of 25 spectra spanning the transition 

region was extracted from the original and restored data sets (Fig. 3.7 C,D, white line). Baseline-

corrected areas of several biomarker peaks were measured and plotted (Figure 3.7 E,F). Plots of 

the intensity of peaks corresponding to distinct tissue constituents (marked in 3.7A) that vary 

between the two morphological layers show that the transition is sharper and stronger in each 

case, following deconvolution (solid lines) compared to the original data (dashed lines). The 

deconvolution algorithm is thus successful in increasing the spatial resolution and 

spectrochemical contrast of IRENI images.  

 This demonstration has important implications for the value of this restoration process. 

Many biochemical and biomedical studies are focused on changes at the cellular and sub-cellular 

level. The deblurring capability offered by this deconvolution method represents a significant 

practical step forward, retaining the true chemical information through achieving the best spatial 

and chemical contrast from the raw data. 
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Figure 3.7: Deconvolution of IRENI data resolves biological details. A) Representative single-pixel 
IRENI spectra of the photoreceptor nucleus layer (red) and outer plexiform layer (blue) from mouse 
retina.  B) Photomicrograph of a hematoxylin-stained serial section. The white box indicates the 
approximate location of the IRENI images. (Scale bar = 50 m).  C and D) False-color spectrochemical 
images created by integrating the area of the nucleic acid peak at 1712 cm-1 for (C) the original IRENI 
FTIR-FPA data and (D) data after hyperspectral deconvolution (red=high, yellow-green=medium, 
blue=low spectral intensity, scale bar = 5 μm).  White lines in (C) and (D) denote the exact locations of 
the stack of spectra extracted from the 25 pixels for analysis. E, F) Peak areas for region-specific marker 
peaks, plotted from data in each stack. [12]  
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3.5  Effect of Numerical Aperture, Spatial Oversampling and Deconvolution 

on Spatial Resolution in Widefield Infrared Spectromicroscopy 

 

The contrast resolution for confocal, dual aperture systems is predicted to be superior to one 

aperture systems, since the point spread function (PSF) is a multiplicative effect of two 

Schwarzschild objective PSFs, and results in a narrower central peak and suppressed sidelobes at 

each wavelength.[11]  Reports of the contrast resolution determined from sufficiently spatially 

oversampled, raster-scanned data for confocal microscope optics with no apertures illuminated 

with a synchrotron beam were similar [15, 16] to the predicted values with dual apertures.  For 

the widefield geometry employed in the present experiment, which is also apertureless, the pixel 

size, and thus spatial oversampling is based on the magnification of the objective that projects a 

certain area of the sample onto the detector pixels.  Here the combination the spatial 

oversampling and NA influence the resolution of synchrotron-based widefield imaging.  Results 

employing an array detector are compared to results in the literature[11, 15, 16]  for synchrotron-

based confocal, dual aperture, raster-scanning systems.  It is shown that they are, within the 

noise, identical for deconvoluted image data and raster-scanned data from the confocal 

microscope, which is significant since samples are measured more quickly with the array 

detector. Spectrochemical images from two Schwarzschild objectives with varying magnification 

and NA (36, 0.5 NA and 74, 0.65 NA), both used in the Bruker Hyperion 3000 microscope, 

will be used to demonstrate this. While the highest magnification is likely desirable in most 

cases, experimental constraints sometimes require the inherently larger working distance (i.e. 

environmental controlled stages) and or the lower numerical aperture (i.e. tomography) that are 

available with the lower magnification and lower NA objective. The comparison between the 
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different magnifications and NAs allows an examination of the impact of spatial oversampling 

on the contrast resolution. 

  To address the relationship between numerical aperture, pixelisation, deconvolution, and 

spatial resolution, several studies have been performed.  The performance of the 36 and 74- 

based imaging systems is first evaluated from measurements of United States Air Force (USAF) 

targets.  The performance of these imaging systems following deconvolution of the 

corresponding instrumental PSFs as determined from transmission measurements of a 2 m 

diameter pinhole placed at the sample plane [12] is considered next.  This is followed by studies 

of a sample of a single MDA-MB-231 hormone independent breast cancer cell labelled with an 

exogenous metal-carbonyl derivative (Re(CO)3N3)[18] is analyzed as a demonstration of the 

impact of oversampling and deconvolution in a biologically relevant sample.  IR-specific 

biomarkers, such as  metal-carbonyl derivatives, show intense absorptions in the transparent 

window of biological media between 2000-1850 cm-1.  Such markers are important in 

spectromicroscopy applications, as they allow for the unambiguous determination of the 

localization of cellular organelles in IR microscopic data sets.  For example, the Re(CO)3N3 

biomarker used here on single breast cancer cells specifically labels the Golgi Apparatus (GA). 

[18]       

 The samples are measured in transmission mode with two different Schwarszchild 

objectives. When the 74 Schwarzschild objective is used for focusing, a 20 Schwarzschild 

condenser (0.58 NA) is used to illuminate the sample. The objective effectively projects 0.54  

0.54 m2 of the sample area onto each 40  40 m2 detector pixel.[7, 19] Typically, lower 

magnification and smaller NA objectives provide larger working distances, which is also the case 

for Schwarzschild objectives.  Thus, when experimental limitations require larger working 
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distances than the limiting range of 1 mm for the 74 objective, or require a smaller numerical 

aperture, other options can be employed.   

 In Figure 3.8, simulated resolutions based on the parameters determined from the 

experimental PSFs [7] for both objectives are compared with the experimentally-determined 

wavelength-dependent resolution of both objectives.  The PSF contrast resolution (PSFCR), 

which is similar to the Rayleigh criterion for the Airy function, is first considered for the 2 

objectives (solid lines, right axis).  Here full width at 73.6% maximum is calculated because two 

objects are considered resolved if the contrast difference between them exceeds 26.4%. [9]  As 

for the case of the FWHM, the PSFCR is substantially smaller for the 74 than for the 36 

objective, particularly at the longest wavelengths and is likely due to the difference in the NA of 

the objectives. Next, the experimental spatial resolutions of the objectives were determined from 

transmission measurements of high-resolution USAF targets, as described elsewhere [7, 12, 19].  

The results from the original experimental (open circles) and deconvoluted (solid triangles) data 

are compared to the simulated PSFCRs; the experimentally resolved features from the original 

USAF target data (grey circles) for the 74 is only slightly above that predicted by the simulated 

PSFCRs, most likely due to experimental uncertainty in the measurements.  In contrast, the 36 

results show a substantially poorer agreement with the predicted PSFCR, likely due to the 

coarser spatial sampling employed with the 36× geometry. The raw data collected with 74 

magnification (0.54054 m2 projected sample area/pixel) is sufficient to retrieve resolutions 

similar to the simulated PSFCR. The original data measured with the 36 magnification, with 

inherently coarser sampling (1.11.1 m2 projected sample area/pixel), is unable to achieve the 

optimal resolution due to the spatial sampling.  In order to achieve optimal spatial resolution, the 

data must be sampled with at least 8 pixels spanning the dimension of the airy disk for any given 
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wavelength.  Using the conventional Rayleigh criterion for the shortest wavelength in the mid-IR 

(2.5 m), this corresponds to a pixel size no larger than 0.6 m for the 74× objective, which is 

larger than the effective pixel size in the geometry employed here.  Conversely, this sampling 

criterion for the 36× objective requires a pixel spacing no larger than 0.76 m, which is smaller 

than the effective pixel size.  Thus the optical setup for the 36× geometry is undersampled for 

wavelengths below 3.6 m (2770 cm-1).  Following deconvolution, however, both objectives 

yield resolutions exceeding the predicted PSFCR criterion, yet still retain their dependence on 

NA as expected. This suggests that instrumental broadening is successfully removed through 

deconvolution, and a more faithful image is recovered in both cases.  

 Next, these results are compared to previously published works performed with 

analogous objectives.  Carr [11] explored resolution limits using a confocal synchrotron-based 

IR microscope with NA=0.65, while Levenson et. al. [15, 16] used a similar approach to study 

spatial resolution limits with a 32 objective with NA=0.65. For a direct comparison to the 

results shown here, two lines are included in Figure 1 that correspond to the reported [15, 16]  

PSFCR trends for the confocal dual aperture microscope with similar NAs (0.47 describes the 

confocal Rayleigh Criterion resolution for a NA=0.65 objective, [16] while 0.61 describes the 

same quantity for a NA=0.5 objective).  This is appropriate because the objective NA is the 

primary contribution to the achievable resolution. The PSF contrast resolution results presented 

here for the original (undeconvoluted) data with the 74 objective (NA=0.65) show resolution 

limits ranging from comparable (3000-4000 cm-1) to poorer (2000-2500 cm-1) to those described 

previously[11] for the dual aperture confocal setup.  Upon deconvolution using measured PSFs 

of the 36× and 74× objectives, however, the resolution of the 74× exceeds the resolution of the 

confocal geometry with a similar NA, while that of the 36× geometry becomes comparable to or 
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slightly better than the predicted resolution for a NA=0.5 confocal geometry.[11, 15, 16] In sum, 

with the correct oversampling, and therefore projected sample pixel size that is matched to the 

NA of the objective, one achieves similar spatial resolution results for dual aperture confocal 

mapping and FPA based imaging.  Application of PSF deconvolution allows for the resolution of 

wide-field FPA-based microscopy to exceed that of confocal microscopy. 

 
 

Fig. 3.8 Predicted and experimental spatial resolutions of original and deconvoluted data. Contrast 
resolution (solid lines) of the PSF for the 36(NA 0.5)   and 74 (NA 0.6NA)  objectives compared to the 
experimentally determined resolution limit for the 36 (NA 0.5)  and 74 (NA 0.6NA) objectives before 
(open circles) and after (filled triangles) deconvolution, and with reported NA dependent trends for 
confocal, raster scanning resolution limits (dotted lines). 
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 These results are now considered within the context of a realistic biological specimen, 

namely, a breast cancer cell labelled with a metal carbonyl biomarker (Re(CO)3N3).  This label 

has been shown to selectively bind to the GA[18]; therefore, chemical images showing its 

localization within the cell should indicate a spatial distribution displaced from that of the 

nucleus, which is indicated by the region with the highest Amide absorption [18].  Fig. 3.9  

shows integrated images of the Amide I and metal carbonyl functional groups within the cell 

generated from both the raw and deconvoluted data sets taken with the 36× and 74× objectives.  

The following parameters were used to generate the integrated images:  For the Amide I band, 

the integration was performed over 1600-1690 cm-1, with the same baseline.  Integration of the 

biomarker signature was performed over the C=O stretching feature from 2005-2040 cm-1 with 

the same baseline.  In the raw data taken with both objectives, the distribution of the Amide 

shows a slight displacement from the localization of the biomarker signature, which is discussed 

further below.  Upon comparison of the raw and deconvoluted data from both objectives, it is 

clear that in all cases the deconvolution produces images show sharper, more well-defined 

features with enhanced contrast.   

 To more qualitatively address the effect of deconvolution on the data from both 

objectives, intensity profiles through the same position of the cell are shown for both datasets 

(Fig. 3.10).  The location of the profile used for the 74× data set is indicated by the white line in 

Fig. 3.9B; all of the 74× profiles in Fig. 3.10 from the different functional groups are extracted 

from the exact same location.  The location from which the profiles from the 36× data are 

extracted is shown by the white line in Fig. 3.9H. The relative distributions of the Amide I and 

the biomarker  
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Fig. 3.9: Original and Deconvoluted images of a breast cancer cell labelled with a metal-carbonyl marker 
taken with both 74× and 36× objectives.  A-B) show original chemical images NOTE: (color scales: 
purple (low intensity) – red (high intensity)) of the cell as measured with the 74× objective generated by 
integrating under C=O stretching of the biomarker (A), and Amide 1 (B).  Scale bar in a is 20 m.  C-D) 
show the results of deconvolution of the data used to generate A-B).  E-F) show the analogous data of A-
B) as measured with the 36× objective.  Scale bar in E is 20 m.  G-H) show the results of deconvolution 
of the data used to generate C-D). 

 

features within the cell as indicated by the original and deconvoluted 36× data (Fig. 3.10A) are 

first considered.  A comparison of the profiles from the Amide I chemical images from the 

original and deconvoluted datasets shows that the deconvolution results in a narrowing of the 

Amide distribution and a sharper edge at the periphery of the cell.  Several informative quantities 

will be considered to  evaluate the data.  The first is the effective spacing between the Amide and 

Biomarker distributions as measured from the distance between the peak values of the Amide 
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and Biomarker profiles, as shown in Fig. 3.10.  Next, to quantify subcellular distances in this 

sample, a figure of merit is introduced; namely, the distance between the peak value of the 

integrated intensity to the point where it reaches its minimum value (e.g., the peak-to-edge 

distances) for all of the profiles shown in Fig. 3.10.  Lastly, to explore the relationship between 

error propagation and spatial oversampling, a simple error analysis of the conclusions drawn on 

the Amide and Biomarker distributions is discussed.     

 The relative displacements between the Amide and Biomarker signatures in the 36× and 

74× datasets are considered first.  In Fig. 3.10A, both the original and deconvoluted data sets 

show that the distance between the maximum values of the Amide and Biomarker signals is 2 

pixels, or 2.2 m given the effective geometric pixel size at the sample plane for the 36× 

objective.  The same quantity for the 74× objective in Fig. 3.10B is exactly 3 pixels, 

corresponding to an effective geometric distance of 1.62 m at the sample plane. This 

discrepancy between the 2 objectives is a direct result of the coarser sampling of the 36× 

objective.  While the difference between the two values is only 0.58 m, this difference is a 

significant deviation of 35.8% from the Amide/biomarker separation measured between the 74× 

objective and corresponds to, nearly identically, the effective geometric size of one pixel using 

the 74× objective geometry (0.54 m).  Thus, these data indicate that sufficient spatial 

oversampling is critical in applications such as subcellular microscopy of biological specimens. 

 Next, the peak-to edge distances in the profiles shown in Fig. 3.10 are used to evaluate 

the change between raw and deconvoluted data for the two objectives. These distances for the 

Amide I and Biomarker signatures before and after deconvolution are summarized in Table I.  

First, for the Amide profiles derived from the 36× objective (Fig. 3.10A); the distance from the 

centre of the cell (the point of highest intensity in the Amide profile) to the bottom edge of the  
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Fig. 3.10 Line profiles through chemical images of the labelled cell shown in Fig. 3.9.  A)  original and 
deconvoluted line profiles of the Amide and biomarker chemical images shown in Fig. 3H-I and K-L.  
The profiles all come from the location indicated by the white line in Fig. 3H.  The displacement between 
the Amide and biomarker signatures is measured to be 2.2 m.  B)  Original and deconvoluted line 
profiles of the Amide and biomarker chemical images shown in Fig 3.9B-C and E-F.  The profiles all 
come from the location indicated by the white line in Fig. 3.9B.  The displacement between the Amide 
and biomarker signatures is measured to be 1.62m 

 

cell (where the intensity profile approaches its minimum value) is 7.8 m in the original data set 

and 6.4 m in the deconvoluted dataset, indicating a decrease of approximately 18% in the peak-

to-edge spatial distribution of the Amide.  In the case of the biomarker, the distance from the 

point of highest intensity of the biomarker to the bottom edge of the cell where the biomarker 

signal drops to zero changes from 10 m in the original intensity profile to 7.7 m in the 

deconvoluted profile.  This corresponds to a decrease of 23% in the spatial distribution of the 

biomarker following the application of deconvolution.  For the case of the 74× objective, shown 

in Fig. 2.12B,  a similar trend showing a narrowing of the Amide and biomarker distributions  
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Table 3.1:  Changes in Amide and Biomarker distribution for both objectives following deconvolution 

 

is observed following deconvolution.  In this case, the Amide peak-to-edge distance decreases 

from 8.7 m in the original data to 6.55 m in the deconvoluted data, corresponding to a change 

of 24.7%.  Similarly, the peak-to-edge distance of the biomarker signature decreases from 10.8 

m in the raw data to 8.1 m in the deconvoluted data, a change of 25%.  These data give a 

direct demonstration of the impact of spatial oversampling on the effectiveness of deconvolution 

deconvolution; the decrease in the effective distribution of the biomarker and Amide signatures 

shows a greater improvement for the case of the 74× oversampling than that of the 36×.  For 

example, the change in peak-to-edge distance of the Amide I and biomarker distributions 

following deconvolution are 18% and 23%, respectively, for the 36× geometry.  The same values 

for the 74× geometry are 24% and 25%; as before, these data indicate that the application of 

deconvolution has a greater impact in the case of sufficiently oversampled data.  The relatively 

similar improvements between the Amide I and biomarker signatures in the 74× geometry upon 

deconvolution (24% and 25%) are consistent with the very similar wavelengths that the 

biomarker and Amide absorptions occur.  With twice the pixel spacing of the 74× geometry, the 

36× geometry has a measurement uncertainty that is 0.56 m greater than that of the 74× 

geometry.  This uncertainty, though small, can have a large impact on the assessment of 
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distances and overall image detail when performing microscopy at the diffraction limit.  This 

uncertainty is likely accountable for the comparatively large discrepancy in the changes in the 

peak to edge distances of the Amide I and biomarker distributions following deconvolution (18% 

and 23%, respectively).   

 Next this measurement uncertainty is discussed in more detail.  Consider first the 

measurement of the change in peak to edge distance in the Amide I distribution in the cell 

following deconvolution (decrease from 7.8 m to 6.4m in the 36× data).  A measurement 

error of 1.1 m in the peak to edge distances in the original and deconvoluted data will give a 

contribution of 4% toward the measurement error of the percent change in this distance, giving 

an error of 18±4%.  Similarly, the error in the peak to edge measurement of the biomarker in the 

36× data is 23±4.1%.  The corresponding errors for the 74× data are 24.7±2.6% and 25±2.1% for 

the Amide and biomarker changes, respectively. These data show that spatial oversampling has 

an important, measureable effect on both overall spatial resolution as well as measurement error, 

and underline the critical importance of spatial oversampling when performing diffraction-

limited spectromicroscopy. 
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3.6 Conclusions 

The PSF, which defines the imaging characteristics of the IR microscope at IRENI, is determined 

by the geometric structure of the focusing Schwarzchild objective.  This PSF has been 

determined throughout the mid-IR region for the 74× and 36× objectives used for the Bruker 

Hyperion 3000 microscope.  Methods have been developed to deconvolute the known PSFs from 

measured datasets using a Fourier spectral filtering approach.  The results of this method show 

the potential for enhanced spatial resolution and contrast in IR images, with the achievable 

resolution well below the conventional Rayleigh limit.  The role of the factors contributing to the 

overall spatial resolution, namely the numerical aperture, oversampling and deconvolution are 

evaluated and discussed within the context of a biological specimen.   In general, it is most 

desirable to perform imaging experiments with the highest possible numerical aperture and 

oversampling beyond the Stelzer criterion [9]. 
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Chapter 4: Probing the Structure and Composition of Graphene 
Oxide and Reduced Graphene Oxide 

 

Graphene Oxide (GO) has been characterized using TEM, SAD, and IR Microspectroscopy.  The 

average structure and predominant oxygen functional groups have been identified.  Two methods 

of reduction, thermal reduction and chemical reduction via hydrazine monohydrate, have been 

studied by TEM, SAD, HRTEM, IR Microspectroscopy, and first-principles calculations.  The 

composition and final structure of reduced GO (RGO)  have found to be highly dependent on the 

reduction method.  For the case of vacuum thermal reduction of GO on Mo TEM grids, 

experiments and calculations have shown that an unexpected ordering of the oxygen functional 

groups takes place, forming a quasi-hexagonal lattice of double-epoxide groups known as 

graphene monoxide (GMO).  Reduction via hydrazine treatment followed by a mild thermal 

anneal in air does not result in formation of double-epoxide groups, but rather leaves only single 

epoxide groups and carbonyl groups, with minority carbonyl groups.  The electronic properties 

of these materials are investigated using IR/Optical measurements, FET measurements, density 

functional theory (DFT) calculations.  The optical properties of RGO multilayers and SnO2 

nanocrystal-intercalated RGO multilayer heterostructures are contrasted.   
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4.1 Introduction 

 Graphene is a single atomic layer of graphite, consisting of carbon atoms arranged in a 

honeycomb lattice.  Since its first isolation in 2004[1-3], a number of astounding properties of 

graphene have been identified, particularly related to its electronic structure.  Because of its 

symmetry and structure, the band structure of graphene near the Fermi level becomes nearly 

linear at the K-point of the Brillouin zone, implying that the charge carriers have effective mass 

equal to zero.  Such electronic structure leads to extremely high electron mobility, in addition to 

many other exotic effects not seen in other materials.  Because of its electronic properties and 

high surface-to-volume ratio, materials based on graphene have demonstrated tremendous 

potential for future electronic devices.   

 Large-scale production of graphene has, however, remained a problem.  The first method 

used for isolation of graphene, mechanical exfoliation (e.g., peeling off of graphite with scotch 

tape) is labor intensive and impractical for scaled-up production.  Another method involves 

thermal decomposition of SiC (0001), where after heating to temperatures exceeding 1000° C, 

one or more layers of  graphene are formed on top of a carbon buffer layer on the SiC surface.  

The largest drawback of this method is the extremely high cost of SiC substrate, which becomes 

cost-prohibitive of large scale production.  Growth on metal substrates by chemical vapor 

deposition (CVD) by decomposition of hydrocarbons at high temperatures represents another 

growth modality that lies somewhere in the middle of the spectrum of impracticality and expense 

of large-scale production.[4-6]  The last major option for large-scale production of graphene is 

through reduction of GO.  The advantages of this approach are that GO can be produced cost-

effectively in solution from graphite and easily dispersed in large quantities monolayer or 

multilayer form.  Deposition from solution is also attractive from an applications standpoint.  
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Reduction of GO is also scalable; chemical reduction via hydrazine monohydrate can be 

performed directly on GO suspensions, and thermal reduction easily performed for GO mounted 

on a suitable substrate.  Thermal reduction also has the advantage that the degree to which the 

GO is reduced may largely be tuned using predefined annealing temperatures and times.  There 

are, however, many drawbacks to this approach.  The first is that the precise structure of GO is 

something that is poorly defined and understood.  The process of oxidation of graphite to form 

graphite oxide and subsequently GO produces a material that is disordered and non-

stoichiometric, with numerous species of oxygen functional groups decorating the carbon basal 

planes.  Second, RGO is never fully reduced by reduction treatments; some degree of residual 

oxidation, for better or worse, always remains.  Lastly, reduction of GO introduces large 

quantities of defects into the lattice, as the desorption products during reduction are often CO and 

CO2.  These defects can span the entire spectrum of lattice vacancies to extended sp3 regions to 

large holes in the film.  As such, RGO differs dramatically from the desired graphene, yet 

comprises an entirely new classes of materials.  The work in this chapter focuses on 

understanding the atomic structure and composition of GO and RGO, such that these properties 

may be correlated to synthesis and ideally be tailored as desired.   
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4.2 Characterization of Graphene Oxide 

4.2.1 Sample Preparation 

GO samples, obtained by our collaborators, were prepared in aqueous solution by a modified 

Hummers method [7].  Samples for TEM were prepared by dropping 1 L of the resulting 

suspension onto a lacey carbon coated Cu TEM grid and were dried in air overnight.  Samples 

for IR spectroscopy were prepared by depositing approximately 10L of GO solution onto IR 

transparent diamond windows and gold-coated microscope slides and were dried in air overnight.  

The same technique was used for deposition of chemically reduced GO samples. 

4.2.2 Transmission Electron Microscopy 

TEM and SAD was performed on the GO samples using a Hitachi H9000 NAR TEM operating 

at an accelerating voltage of 300 kV.  BFTEM images of the film showed, not surprisingly, a 

uniform intensity distribution and were not of any use in subsequent analysis and are not shown 

here.  SAD patterns of the sample were much more valuable for structural analysis.  A 

representative SAD pattern of a GO sample is shown in Fig. 4.1.  The pattern is collected at a 0.5 

m camera length; at this camera length, two rings are present in the field of view corresponding 

to lattice spacings of 0.213 nm and 0.123 nm.  For ease of interpretation, the hypothetical SAD 

pattern of a single crystal graphene samples is overlaid.  Several conclusions can be immediately 

drawn by comparison of the measured GO SAD pattern with the hypothetical graphene pattern.  

First, the sample presents a ring pattern rather than a spot pattern; this type of a pattern generally 

indicates that the sample consists of randomly oriented grains (or sheets).  Based on the planar 

nature of the sample, this ring pattern indicates that the sample has a multilayer morphology with 

no stacking order between the layers; i.e., the sheets in the multilayer are randomly oriented.  
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Second, the two observed rings have the spacings of the [10-10] and [11-20] family of reflections 

in the graphene lattice.  From this it can be concluded that the ordered component GO sample 

has, on average, the same lattice spacing as graphene.  In addition, the lack of any spacings other 

than those corresponding to graphene indicates that the oxygen functional groups present in the 

GO sample do not form any superlattice ordering.  Lastly, the pattern shows that the inner [10-

10] reflection has a greater intensity than the outer [11-20] reflection.  For the case of graphene 

and graphite, it was shown [8] that for samples with ordered stacking, any sample thicker than 

one monolayer (e.g., one graphene bilayer and thicker) will show greater diffracted intensity in 

the [11-20]-type reflections than in the [10-10]-type reflections.  The fact that the latter 

reflections are brighter in this pattern indicates that the sheets comprising the multilayered 

sample are in fact graphene monolayers, rather than few-layer graphene/graphite with ordered 

stacking.  Overall, the conclusions drawn from the SAD analsyis presented here are in good 

agreement with previously published diffraction data on GO. [9] 
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Fig. 4.1 SAD pattern of unreduced GO overlaid with a hypothetical single crystal graphene SAD pattern 
(blue). 

 

4.2.2 IR Microspectroscopy 

While many studies have performed IR measurements on GO, the overall band assignments are 

extremely complicated and remain controversial due to the many types of oxygen functional 

groups in GO.  As an attempt of deriving some further structural information about our samples 

and identifying which functional groups are present prior to reduction, IR absorption studies of 

GO samples were performed using the IRENI beamline at SRC using two different experimental 

geometries.  Normal incidence transmission (NIT) measurements were performed on GO 

samples mounted on diamond windows and grazing incidence reflectance (GIR) measurements 

were performed with the films mounted onto the gold-coated slides.  The rationale for this 

approach was to try to extract some orientation about the oxygen groups in the samples by 

controlling the direction of the electric field of the probe.  While the NIT geometry has field 
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components both in-plane and out-of-plane, in the GIR experiment the components are strictly 

normal to the surface.  The IR absorption spectra of GO as determined from these two 

experimental geometries are shown in Fig. 4.2.  Upon comparison of the spectra, several 

similarities and differences are immediately obvious.  First, in the OH stretching region (3000-

3600 cm-1), the NIT absorption spectrum has absorption bands at 3250, 3360, and 3520 cm-1, 

whereas the GIR absorption spectrum has bands at 3300, 3420, and 3570 cm-1.  This spectral 

region comprises absorptions due to intercalated water and various species of hydroxyl and 

carboxylic groups.  Due to the complexity of the possible bonding sites and the additional 

complication of hydrogen bonding, a precise interpretation for the bands in this region is elusive; 

however, bands below 1800 cm-1 are more readily assignable.  First, the band observed at 1740 

cm-1 in both the NIT and GIR spectra is assigned to the carbonyl C=O bond stretching.  The  
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Fig. 4.2:  Absorbance spectra of unreduced GO as determined from the NIT (black) and GIR (red)  geometries.  In 
the NIT spectrum, the reference used is the clean diamond window, and in the GIR geometry the reference is the 
clean gold. 

clear activity of this band in both experimental geometries suggests that the C=O bond has 

components both parallel and perpendicular to the carbon basal planes.  In the normal incidence 

geometry, the next band is observed is 1600 cm-1; this band corresponds to the C=C stretching 

vibrations of the underlying carbon skeleton.  The next band observed is located at 1640 cm-1 

and  corresponds to the OH bending mode of the intercalated water molecules.  The enhanced 

absorption of this mode in the GIR geometry suggests an alignment of the intercalated water 

molecules with their molecular axes perpendicular to the carbon planes.  A band at between 

1300-1500 cm-1 is active in both the normal and grazing incidence experimental geometries and 

appears to be a superposition of several bands.  Three specific vibrations are likely to contribute 
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in this spectral region; first, absorption due to the C=C bond stretching of the C atoms hosting 

the oxygen atom in the epoxide group likely gives a contribution.  The presence of the COC 

bond in this case is responsible for the redshifted frequency, and the IR activity in the GIR 

geometry arises because expansion/compression of the C=C bonds causes an oscillation of the 

oxygen atom perpendicular to the basal planes.  The second contribution likely comes from the 

C-O-H angle bending of the adsorbed hydroxyl groups and COOH bending of carboxylic groups.  

Third, the carboxylic C=O stretches are likely to also fall in this region.  Finally, a band centered 

at 1100 cm-1 is observed in both geometries and also is clearly a superposition.  The first mode to 

give a contribution in this region is the adsorbate/substrate bond stretching of the hydroxyl 

groups.  The second mode would be the asymmetric and symmetric stretching vibrations of the 

epoxide groups, each of which will give a contribution both normal and parallel to the carbon 

basal planes, as discussed in more detail in section 4.4.  The overall bonding scheme of the 

majority functional groups in GO derived from the combined experiments and theoretical 

calculations is shown in Fig. 4.3. 
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Fig. 4.3:  Representative structural models of the primary oxygen functional groups in GO.  A) Hydroxyl 
group.  B) Carboxyl group C) Carbonyl pair at a defect D) Epoxide group E) Intercalated water. 
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4.3 Vacuum Thermal Reduction of GO:  Possible Evidence of Nanocrystalline 

graphene monoxide  

Graphene has demonstrated great potential for novel electronic technologies;[10-12]  however, 

many emerging applications require atomically thin films with a substantial band gap.  One route 

toward the manipulation of the electronic properties of graphene-based materials is through 

chemical modification.  Chemically-modified graphene or graphene oxide (GO) [13-17] has 

already found various applications such as supercapacitors,[18] sensors[19, 20] and flexible 

transparent conductive electrodes. [21]  However, GO is a non-stoichiometric, partially 

disordered material[9, 22] with poor electronic properties.  While studies have indicated that on 

average the hexagonal lattice constant of graphene is preserved in GO,[22, 23] amorphous 

regions coexist with the crystalline carbon lattice, with a number of oxygen functional groups, 

such as hydroxyl, carboxyl, carbonyl, epoxide, and intercalated water,[23-25] bonded  with no 

long range order.[22]  These disordered qualities of GO make it an unappealing candidate for 

application in modern electronics.  Thus, GO is most commonly modified by various chemical[15] 

and thermal reduction treatments[23-25] with the goal of removing oxygen functional groups 

from GO and producing graphene.  While the quality of the resulting materials can in general be 

improved via chemical vapor deposition (CVD),[4]  these treatments generally fail to form 

graphene and produce yet another nonstoichiometric partially reduced GO where oxygen 

remains disordered.   

Here it is proposed that a stoichiometric carbon oxide could be formed by vacuum 

annealing of multilayered GO, a method commonly used to make thermally reduced graphene 

oxide (TRGO).  Studies of TRGO, however, have primarily focused on reduction of monolayer 

or few layer systems,[23-25] with little attention paid to thermal reduction of systems with a 
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large number of layers.  There are also no reports of the use of catalysts to aid the thermal  

reduction process.  While previous reports[25] have shown that the chemistry of intercalated 

water in multilayer GO is significant, no investigations have reported the effect of vacuum 

annealing a large number of GO layers to high temperature.  One interpretation of the data in this 

chapter is that the multilayer structure of GO thin films with intercalated water results in a 

previously unobserved atomic structure and morphology when annealed in vacuum: a two-

dimensional phase segregation produces graphitic regions with little or no oxidation that coexist 

with oxidized regions with an unusually high oxygen content.  This work combines in situ 

selected area electron diffraction (SAD) studies with synchrotron-based infrared 

microspectroscopy (IRMS) and density functional theory (DFT) calculations to attempt to 

understand the reduction process.   From DFT modeling guided by experimentally-derived 

structural data, a structure called Graphene Monoxide (GMO) was derived in an attempt to 

understand the SAD and IR data.  GMO consists of a quasi-hexagonal unit cell with two carbon 

atoms bridged by a double-epoxide pair.  GMO is of interest because of its appealing transport 

properties.  Additional theoretical work on GMO [26] suggests that its electronic structure could 

potentially be tuned over a wide range, motivating work on understanding the synthesis of the 

proposed GMO. 

 

4.3.1 Methods 

GO suspensions were synthesized using a modified Hummers method, as described in 

previous work [7].  GO multilayer samples were prepared by drop-casting 2 l of the resulting 

suspension onto bare 200 mesh Mo TEM grids.  The individual GO monolayers became stacked 

after water evaporation, forming self-supporting multilayer structures that span the grid holes.  
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Monolayer GO samples were prepared by drop-casting diluted suspensions into Si TEM grids 

with an ultrathin Si3N4 membrane.  

 TEM studies were performed in situ using a Gatan tantalum-cup heating holder inside a 

Hitachi H9000NAR TEM operating at an accelerating voltage of 300 keV.  The column pressure 

of the TEM was maintained at approximately 10-7 torr.  The TEM is equipped with a Gatan Orius 

SC CCD, which was used to record diffraction movies with 1 frame (1s exposure time) per 4 

seconds.  An SAD pattern of the GO film was recorded during the vacuum annealing process, 

allowing structure to be correlated with temperature that was detected with a thermocouple.  An 

SAD movie (see Supplementary Information) was recorded at the same region of the sample and 

the electron beam intensity was fixed throughout the experiment.  Importantly, SAED patterns 

were recorded both during and after annealing of the sample, indicating that the structural 

changes observed during the experiment were stable upon cooling the sample to room 

temperature.  A radially averaged profile of diffraction intensity (such as displayed in the insets 

of Fig. 4.4) was extracted from each frame of the SAD movie corresponding to the temperature 

of the sample, and subsequently combined as Fig. 3.4B, thus indicating the evolution of the 

reciprocal space positions (y-axis) of the diffracted electrons with increasing temperature (x-

axis).  During annealing and after being cooled, the samples were studied using SAD, CBED, 

HRTEM, and bright-field TEM.  In other in situ experiments, a CBED pattern, taken with a 17 

nm convergent beam electron probe, was examined as the samples were reduced.  

 After TEM analysis, IRMS was performed on the same TRGO samples.  IR 

measurements were performed at the Synchrotron Radiation Center (SRC, Stoughton, WI) at the 

IRENI beamline [27].  The films as prepared on TEM grids were measured in a Bruker Hyperion 

3000 IR Microscope coupled to a synchrotron source.  Normal incidence transmittance and 
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reflectance measurements were performed on the free standing films supported on TEM grids.  

By repeating the experiments with objectives of different numerical aperture, measurement 

effects resulting from convergence of the synchrotron beam being focused by the Schwarzschild 

focusing optics were ruled out.  The films were subsequently removed from the grids and placed 

on microscope slides with an IR reflective coating (Kevely Technologies).  This enabled the 

films to be measured at a grazing incidence using a Bruker Grazing Angle IR microscope 

objective lens.  GI measurements were performed with an IR polarizer to emphasize only 

radiation polarized parallel to the plane of incidence.   

The density functional calculations were carried out using the all-electron Full-potential 

Linearized Augmented Plane Wave method, as implemented in flair. [28]  The GMO and 

graphene calculations used the generalized gradient approximation (GGA) of Perdew, Burke, 

and Ernzerhof for exchange-correlation; sphere radii of 1.2 aB for both C and O; plane wave 

basis and charge/potential representation cutoffs of 275 and 2700 eV, respectively; 12×12×2 to 

36×36×2 k-point sets; and vacuum regions of 15 Å. The internal coordinates were relaxed to a 

force criterion of 10-4 eV/Å.  Other C:O ratios and configurations were modeled starting from 

2×2 hexagonal cells with 8 carbon atoms. 

 

4.3.2 Results and Discussion 

 Figure 4.4A compares SAD patterns of a multilayer GO film before (left) and during 

(right) in situ vacuum annealing, at 750° C.  Before annealing, the primary features evident in 

Figure 3.4A are the diffraction rings (labeled as I and II) from spacings of 0.213 nm and 0.123 

nm, respectively, corresponding to the [100]- and [110]-type reflections of graphene. A ring 

pattern is observed rather than a spot pattern due to the fact that the sample consists of a large 
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number of randomly oriented layers.  Analysis of the relative intensities show that the [100] type 

reflections produce a greater diffracted intensity than the [110] reflections, indicating that the 

layers are monolayers with disordered stacking, as opposed to few-layer Bernal-stacked graphite 

oxide.[9]  Moreover, SAD patterns (Fig. 4.5, Table 4.1) recorded at higher scattering angles (i.e., 

smaller lattice spacing), clearly indicate weaker higher order rings also consistent with 

crystalline graphene.  In addition, SAD patterns recorded before annealing (Fig. 4.4A, left) show 

two broad, seemingly amorphous rings centered at about 0.27 and 0.52 Å-1 (0.370 nm and 0.185 

nm in real space).  The amorphous rings can be attributed to first- and second-order reflections 

from nearest-neighbor disordered species. While annealing the multilayer GO film, two 

prominent rings (labeled as III and IV) develop corresponding to spacings of about 0.260 nm and 

0.152 nm, respectively, while the graphene rings (I and II) remain largely unchanged (Fig. 4.4A) 

in reciprocal-space position.  Thus the SAD data demonstrates that a new crystalline phase 

develops upon annealing.  A visualization of the complete temperature-dependent evolution of 

SAD patterns from the GO film annealing (extracted from a real time movie; see Supplementary 

movie) is shown in Fig. 4.4B.  Diffraction rings in a conventional SAD pattern (Fig. 4.4A) 

appear as horizontal lines in the representation of Fig. 4.4B.  From Fig. 4.4B, it is evident that the 

graphene rings, I and II, grow in intensity as the sample is annealed, but that they remain 

essentially fixed in reciprocal space position.  The new crystalline phase characterized by peaks 

III and IV, however, shows a qualitatively different behavior with temperature.  The broad 

amorphous peak (associated with the disordered functional groups) initially centered at about 

0.27 Å-1 appears to split into two bands, one of which evolves in position and intensity into the 

crystalline reflection of the new phase labeled as III.  The remaining amorphous contributions 

shift closer to the reciprocal space origin and suffer a dramatic reduction in intensity, most 
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evident in the 300-500 °C temperature range, with similar behavior observed in band IV. This 

structural ordering does not produce visible features in bright field TEM images, indicating that 

the multilayer morphology is preserved and that the new phase has 2D structure.  The evolution 

of the SAD patterns was observed across the entire sample and was constant upon cooling the 

sample, thus ruling out effects related to sample drift.  These observations were reproducible in 

numerous experiments. 
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 Figure 4.4. Evolution of Electron Diffraction patterns with temperature.  (a) SAD patterns of G-
O sample before (left) and after (right) vacuum reduction anneal.  Overlay is the radial average of 
intensity showing peaks at ring positions I and II before annealing, and the addition of peaks III and IV 
after annealing.  (b) Radially averaged profiles from SAD patterns as a function of temperature. Profiles 
displayed as overlay in top panel are equivalent to profiles along the corresponding dashed lines 
(arrowed) in middle panel of figure. Peaks III and IV, evolve continuously from the broad background, 
most notably in the temperature range from 500 °C to 700 °C.  (c) Temperature-dependent evolution of 
unwrapped SAD patterns.  As temperature is increased, new peaks appear with indicated spacings and 
grow in intensity.  Peaks I and II are attributed to graphene regions of the sample, while peaks III and IV 
are attributed to the new phase.  From [29]. 
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To quantify the temperature evolution of the diffraction data, individual profiles of Fig. 4.4B 

over the complete temperature range were fit with a set of Gaussians.  Figure 4.4C shows the 

fitting results for the crystalline diffraction bands I-IV without the background and amorphous 

contribution where several key features of the structural evolution of the GO film are observed.  

First, the integrated intensity of the graphene peaks I and II, related to the volume fraction of 

scattering material, more than doubles.  Similarly, the integrated intensity of peaks III and IV 

(new phase) grows rapidly from zero in the starting material to more than 1.5 times that of the 

graphene phase at the end of the annealing.  These integrated intensities may be considered in 

terms of qualitative increases and decreases in quantity of material, as an absolute determination 

of the volume fraction would require knowledge of the intensity contained in the transmitted 

beam, unobtainable due to the beam stop.  Second, from the results shown in Fig. 4.4C, the ratio 

of peak positions for the graphene phase (peaks I and II) maintains the value √3 (with absolute 

deviation due to thermal expansion less than 0.1%), as would be expected for an ideal hexagonal 

structure.  The thermal evolution of the new peaks III and IV, while nearly √3 in ratio, deviate 1-

2% (depending on temperature) from the ideal hexagonal crystalline symmetry.  This deviation 

from hexagonal symmetry, too large to be associated with thermal expansion, clearly indicates 

that the crystalline phase associated with the diffraction rings III and IV is centered rectangular, 

albeit nearly hexagonal (quasi-hexagonal), and is distinct from the graphene phase characterized 

by diffraction rings I and II.  
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Fig. 4.5: Higher order SAD reflections in GO (A) and TRGO (B).  Line profiles through the patterns in 
A) and B) are shown in C) and D), respectively. [29] 
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Measured spacings for G-O 
before annealing [nm] 

Measured Spacings after annealing [nm] 

 0.26 

0.213 0.213 

 0.152 

0.123 0.123 

0.107 0.107 

 0.095 

 0.085 

0.081 0.081 

0.071 .071 

0.065 .062 

0.059 .059 

 
Table 4.1:  Measured interplanar spacings of GO and TRGO derived from SAD patterns in Fig. 3.5.  [29]       

  

To elucidate the in situ SAD observations, the geometrical bonding of the films before 

and after annealing was investigated by IRMS.  Using two experimental geometries with– 

normal incidence (NI) transmission and grazing incidence (GI) reflectance – vibrational modes 

with dynamic dipole moments predominantly parallel or perpendicular to the basal plane of the 

films, respectively, are emphasized.  Figure 4.6A-D shows IR absorbance of the samples before 

and after annealing as measured in NI and GI.  The features in the NI spectrum of GO (Fig 4.6A) 

indicate the presence of oxygen functional groups including hydroxyl (3,300 cm-1), carbonyl 
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(1,708 cm-1), carboxyl (1,425 cm-1), epoxide (1,245 cm-1, 900 cm-1), and alkoxy (1,080 cm-1), 

consistent with existing literature.[30]  The feature at 1,580 cm-1 is assigned to the C=C stretch 

of the underlying carbon lattice which is activated in GO due to oxygen functional groups and 

defects.  The GIR (Fig. 4.6C) absorbance spectrum of GO also indicates the presence of O-H 

from intercalated water (stretching modes at 3,300-3,600 cm-1, bending mode at 1,645 cm-1), as 

well as carbonyl (1,708 cm-1) and hydroxyl (C-OH stretching at 1,070 cm-1).  Importantly, two 

peaks were observed at ~900 and 960 cm-1, and at the time of publication were assigned to C-O-

C bending modes.   

 

Figure 4.6. IRMS of GO and TRGO.  Normal Incidence (NI) transmission probes vibrations with 
dipole moments predominantly parallel to the film’s basal plane as the E-field vector (blue arrow) is 
within this plane, while GI probes those with a dipole moment perpendicular to the basal plane.  (a) NI IR 
absorbance of unreduced GO with contributing functional groups assigned to spectral regions.  (b) NI IR 
absorbance spectrum of TRGO samples with functional groups assigned.  (c) GI IR absorbance spectrum 
of GO.  (d) GI IR absorbance spectrum of TRGO.  [29] 

 
After annealing, many of the oxygen functionalities including carbonyl, carboxyl, 

intercalated water, and hydroxyl are no longer present in the NIT spectrum of TRGO (Fig. 4.6B).  
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The C=C stretching mode softens in frequency and evolves into an asymmetric Fano[31] 

lineshape, indicating a continuum of electronic transitions with symmetries parallel to the C=C 

vibrational excitation spanning at least 0.18-0.21 eV.  The C=C stretching mode, which is 

inactive in pure graphene and graphite due to symmetry considerations, is activated due to 

defects and neighboring oxidized regions.  The C-O-C stretching mode, whose overall intensity 

increases dramatically, is softened by about 25 cm-1.  Analysis of this mode from the same 

position of the same sample before and after annealing showed that the integrated intensity of the 

C-O-C asymmetric stretching band increased by a factor of approximately 20 after the annealing 

process.  The doublet assigned to C-O-C bending has diminished intensity and only appears as a 

single peak in the annealed spectrum.  GI IR absorption spectra from samples after annealing are 

also shown in Fig. 4.6D, where many oxygen features are missing, including notably, those 

associated with water.  While the C-O-C mode at 1,205 cm-1 is very weakly active in this 

geometry, a prominent new mode is seen at 1,050 cm-1.  Thus, we conclude that the nano-

crystalline phase contains structures that give rise to only two distinct vibrational modes 

involving C-O displacements that were active in the NI geometry, and one C-O mode that was 

active in the GI geometry.   

The electron diffraction data presented in Fig 4.4 show that the vacuum thermal reduction 

of multilayered GO results in a two-phase nanoscale system containing regions of graphene and 

a new (as yet undetermined) crystalline phase.  Phase segregation has been theoretically 

predicted [32] and experimentally observed in reduced graphene oxide but with little information 

provided about the structure. [33]  In reference, a C:O ratio of 2:1 was observed through XPS 

measurements, with slowly varying stoichiometry across the sample.  An extensive search of 

possible unit cells for C-O-C groups bonded to a primarily unperturbed graphene lattice 
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concluded that no configuration of epoxide groups attached to such a graphene lattice produces 

SAD reflections in agreement with those measured.  Moreover, careful examination of high 

camera length diffraction patterns from the carbon-oxide phase, which probes reciprocal 

spacings closer to the origin, indicated that the 0.260 nm spacing is the lowest order reflection of 

the crystalline unit cell, corresponding to a unit cell about 20% larger than graphene.  Therefore, 

the electron diffraction data indicate a quasi-hexagonal unit cell.  This was further confirmed by 

closely examining the higher order SAD reflections from Fig. 4.5.  To verify the proposed 

symmetry and periodicity of the unit cell, all of the interplanar spacings for a quasi-hexagonal 

structure were calculated, assuming the spacing of 0.26 nm as the lowest order reflection.  The 

results, shown in Table 4.2, show that measured spacings of the TRGO material are consistent 

with the quasi-hexagonal unit cell.   

 

GMO 
Index 

GO/G 
Index 

GO measured spacings, nm 
Quasi-hexagonal model spacings, 

nm 
[100]   .256 

[1-10]   .273 

 [100] .213  

[2-10]   .154 

[110]   .145 

[200] [110] .123 .128 

 [200] 0.1065  

[210]   0.095 

[300]   0.085 

 [210] 0.081  
[220] 
[310] 

[300] 0.071 
0.073 
0.070 

[400] [220] 0.062 0.064 
 

Table 4.2. Comparison of measured GO spacings, known graphene spacings and quasi-hexagonal model 
interplanar spacings.  [29] 
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 DFT calculations demonstrated that adding oxygen to graphene is energetically 

favorable, leading to the proposed quasi-hexagonal double-epoxide structure (Fig. 4.7; C:O=1:1) 

with a binding energy of 4.36 eV/O.  This is significantly higher than previously reported GO 

configurations with high epoxide coverage, [34] where ordered epoxide groups in a C2O 

structure yield a binding energy of 3.73 eV/O in our calculation.    This structure has some 

similarities to models proposed in previous calculations. [35]  The calculated lattice parameters 

of this centered-rectangular (quasi-hexagonal) structure are given in Fig. 4.7B.  Compared with 

graphene, the magnitude of the primitive lattice vectors increases to 3.09 Å (from 2.46 Å) and 

the angle between them is 124° versus the 120° of an ideal hexagonal lattice.  Although this 

structure no longer has the 3-fold symmetry of the graphene lattice, there are three sets of mirror 

planes, corresponding to D2h symmetry, which implies that there are three IR-active vibrational 

modes (Fig. 4.6C); two C-O-C modes are active in the NI geometry and one C-O-C mode in GI, 

consistent with the number of modes observed experimentally.  The correlation between the 

atomic structure and normal modes of all models considered was performed as follows:  The 

number of allowed IR vibrational modes was determined by carrying out a factor group analysis 

of the unit cell.  After identifying the symmetry of each proposed model, the number of modes 

belonging to each irreducible representation was determined using the equation: 

݊ሺఊሻ ൌ ଵ

௚
∑ ߯௝

ሺఊሻכ
௝ ߯௝  (4.1) 

where j is the character for a group operation j, j
( is the character of the irreducible 

representation for group operation j, and g is the order of the group.  The usual selection rules for 

infrared absorption and the Raman effect were then applied to the resulting representation, after 

subtracting off the acoustic modes.  The normal modes of vibration corresponding to the IR 

active irreducible representations were then calculated.  This allowed the component of the 
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dipole moment vector associated with each vibration to be determined, and thus its activity in 

normal or grazing incidence geometries established.    The GMO regions, with a D2h symmetry, 

have IR active modes represented by =B1u+B2u+B3u.  As the components of the dipole moment 

vector, which transform in the same way as the translation vector components within the basal 

plane (Tx and Tz), belong to B1u and B3u, we expect two IR active modes in the NI geometry.  The 

Ty component belongs to B2u, and we thus expect that only this mode will be active in the GI 

geometry.  This analysis was in agreement with the measured spectra (Fig. 4.6).  The normal 

modes of vibration of GMO are shown in Fig. 4.7C.  Figs. 4.7A-B shows the undistorted 

molecular structure of the repeat GMO unit as viewed from different perspectives, while the 

atomic displacements corresponding to each normal mode are shown in Figs. 4.7C.  The 

displacement of the oxygen and carbon atoms produces a dynamic dipole moment within the 

basal planes for the vibrations B1u and B3u, and normal to the basal planes for B2u, giving rise to 

the observed spectral features in different experimental geometries.  

 Various configurations of C-O-C groups were considered; however, only the double-

epoxide structure produces the correct number of allowed vibrational modes in each 

experimental geometry.  Thus, the structure suggested by DFT calculation is consistent with the 

experimental diffraction and infrared spectroscopic data.  The O to C ratio in the oxidized 

regions is significantly higher than previously reported values in unreduced multilayer G-O 

where the average chemical compositions vary from C1O 0.17H0.08 to C1 O0.49H0.2 depending on 

the oxidation time and methods.[36, 37]  As graphene-like islands spread across the G-O 

film,[32] the local oxidation level has been reported to be as high as  C1 O 0.5 to C1 O 0.75H0.75  for 

monolayer GO.[34]  Here, the higher ratio of 1:1 can be realized by converting oxygen species 

present initially in GO to the double-epoxide structure. Initially, there are not enough epoxide or 
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cyclic ether-type oxygen groups in GO to create GMO. However, conversion of the remaining 

oxygen-containing functional groups to a C-O-C configuration could provide a viable path. The 

spectroscopic evidence that suggests this transformation is the changes of the integrated 

intensities of all the oxygen-containing functional groups before and after annealing, including 

the absence of the H2O, OH, and carbonyl absorption bands and the increase in the C-O-C 

asymmetric stretching peak (Fig. 4.6B) after annealing.  Meanwhile, experimentally we observe 

an increase in diffracted intensity of the original GO/graphene reflections, which indicates a 

concurrent increase in the crystalline areas of graphene-like islands that are oxygen-free regions. 

The increase in stoichiometry is only localized to small crystalline regions of GMO, and that the 

overall oxygen content of the entire sample has not increased.  The formation of the new 

composite nanomaterial is likely a consequence of the large number of layers in the starting 

material and the diffusion-limited nature of the reduction process.  
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 Figure 4.7. Proposed GMO structure.  (A) Perspective view of 4x4 unit cells. Carbon (oxygen) 
atoms are yellow (red).  (B) Top view of GMO with the unit cell and various calculated structural 
parameters.  (C) Schematic of the IR active vibrational modes for this model.  Two modes produce a 
dipole moment within the carbon basal planes, and one mode produces a dipole moment perpendicular to 
the basal planes, and are thus active in the NI and GI geometry, respectively.  [29] 
  

 

The proposed structural model was further investigated using HRTEM.  While the 

majority of the sample was much too thick to obtain atomic resolution images, we were able to 

locate a very thin region where the TRGO sheets tore during annealing that enabled imaging of 

the lattice planes of individual GMO domains.  HRTEM images of such a region are shown in 

Fig. 4.8.  The HRTEM image in Fig. 4.8A shows that lattice fringes from individual GMO 

domains can be resolved in thin regions of the sample edges.  Fig. 4.8B shows an enlargement of 

a single GMO domain from the HRTEM image in Fig. 4.7A, with the numerical diffractogram 

from the same region shown in Fig. 4.8C.  In Fig. 4.8B, high frequency components of the image 

beyond the lattice resolution of the microscope have been filtered out, as this data contains no 

real information.  In the diffractogram of this region, two reflections are observed with measured 
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spacings of .25 nm and .254 nm, corresponding to both the [100] and [010]-type reflections of 

GMO.  Measurement of the angle between then sets of lattice fringes yields an angle 55°. This is 

in excellent agreement with DFT predictions from the relaxed GMO model structure which 

suggests an angle of 56° between the GMO [100] and [010] planes.  These results further support 

the structural conclusions based on all SAD, IRMS, and DFT analyses. 

 

 

 

Figure 4.8.  HRTEM images of a TRGO film.  (a) HRTEM image of a thin region of the sample 
(b) Enlargement of the marked region from the image in (a) illustrating a GMO domain with denoted 
lattice spacings.  (High frequency noise has been filtered out as described in the main text).  (c) Numerical 
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diffractogram from the indicated region in (a), showing two prominent reflections with measured spacings 
in agreement with the GMO [100] and [010]-type reflections.  The measured angle between the spots is 
55°.  [29] 

 

The new GMO is predicted to be a semiconductor, with a direct band gap of ~0.9 eV at 

the X point (Fig. 4.9).  The size (and existence) of the gap is dependent on the distortion of the 

lattice away from the ideal hexagonal lattice: constraining GMO to be hexagonal (i.e., an angle 

of 120°) results in a zero gap semiconductor.  The overall shapes and magnitudes of the density 

of states (DOS) of GMO and graphene within ±2 eV of the Fermi level (beyond the gap) are very 

similar.  The sensitivity of the electronic properties to subtle changes in the structure could 

potentially lead to the ability to tailor the band gap.   

 

 

 

 Figure 4.9. Calculated band structure and density of states (DOS) for GMO.  (a) Band structure 
along the high symmetry directions (inset).  (b) Comparison of DOS for GMO and graphene.  [29]
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4.3.3 Role of Molybdenum 

 Following the initial discovery of GMO, numerous further studies were performed, with 

attempts to scale up the production.  In the process of doing so, several different TEM grid 

materials- Cu, Ni, and Pt- were used to attempt to synthesize GMO.  Surprisingly, these 

experiments revealed that GMO could only be synthesized using Mo as the grid material.  

Immediately, this raised many questions about the validity of the proposed interpretation of 

GMO.  The measured spacings were compared to various forms of Molybdenum oxides and 

carbides; however, no known form of Mo matched the measured spacings.  The question then 

became in what fashion is Mo contributing to the new rings observed in the SAD experiments.  

Subsequently, the IR spectra of the GO prepared on Mo TEM grids was revisited.  It was 

determined that the peaks at 900 and 960 cm-1 (GO spectra from NIT measurements, Fig. 4.6A) 

were likely not assignable to C-O-C modes, but rather to the Mo-O stretching modes of MoO2 

(molecular modes located at 900 and 950 cm-1)[38].  Interestingly, comparison of IR 

transmission measurements of samples before and after annealing to form the GMO phase 

showed that after heating, the intensity of the MoO2 bands dramatically decreased and were 

barely present following annealing, as seen by comparing Fig. 4.6 A-B. More surprisingly, a 

comparison IR transmission measurement of GO samples measured on Mo TEM grids (Fig. 4.6) 

and on diamond windows (Fig. 4.2) indicated that the effect of the Mo was to partially reduce the 

GO (this is discussed further below).   

 To further identify the interaction between Mo and GO, samples of GO were treated with 

Mo in partially controlled ways: the aqueous solution of GO was mixed with a commercially 

ordered Mo powder sample, or a Mo TEM grid was allowed to partially dissolve in a GO 

solution.  This solution was then used to prepare Mo-intercalated GO on Ni TEM grids and 
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diamond windows.  When the Mo-intercalated GO samples were prepared this way and then 

heated in situ in the TEM, the evolution of the SAD patterns was the same as before, and clearly 

showed the evolution of the rings assigned to the GMO phase.  Fig. 4.10 shows SAD patterns of 

a sample of prepared by mixing 50 mg of the Mo powder with 0.5 mL of the aqueous GO 

solution (.2 mg/mL GO) at room temperature (A) after heating to 755 C (B).  The pattern clearly 

shows the spacings that emerge due to the new ordered phase after the annealing.  To probe the 

chemical changes induced by the presence of Mo, Fig. 4.11 compares NIT IR spectra from pure 

GO and GO prepared with a Mo TEM grid soaked in the solution for 2 weeks.  The spectra have 

been scaled for clarity.  The overall absorption of the pristine GO appears lower than that treated 

with the Mo TEM grid; however, this is only due to the quantity of sample being measured. 

Indeed, as was the case for GO prepared on TEM grids, the GO mixed with Mo powder appears 

partially reduced as compared to the pure GO.  The intensity of OH features relative to the bands 

in the fingerprint region is lower in the case of the Mo-treated GO, and the frequency of the C=C 

stretching mode has shifted from 1615 to 1580 cm-1.  This shift is routinely observed in reduced 

GO samples that have been reduced by other means (see, e.g., the hydrazine-reduced GO in the 

next section, where the C=C stretch is at ≈1580 cm-1).  There are also bands observed at 905 and 

952 cm-1 due to the MoO2 stretching modes (gas-phase/molecular values at 900 and 949 cm-1 

[38]).  Similar results were obtained for GO treated with Mo powders rather than Mo TEM grids.  

While it is likely that the surfaces of the grids (or powders) as obtained are oxidized, the 

reduction of the GO by the Mo suggests that the powders may dissolve to yield Mo in solution, 

which then reacts with the oxygen groups in the GO to form adsorbed MoO2 and partially reduce 

the GO.  Despite this large quantity of MoO2 present following exposure to either a controlled 

source of Mo, such as a powder, or an uncontrolled source, such as a TEM grid, the peaks 
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assigned to MoO2 are substantially reduced and very nearly absent in the GMO phase.  A close 

comparison of the Mo-O stretching region for the GMO and GO phases prepared on Mo grids is 

shown in Fig. 4.12.   

 Having observed the very large reduction in the overall number of Mo-O bonds in the 

sample following preparation of the GMO phase, the presence or absence of Mo in the final 

samples was investigated using energy dispersive x-ray spectroscopy (EDX).  In this experiment, 

aqueous GO suspensions were exposed to Mo and then deposited onto a Ni TEM grid.  The use 

of the Ni grid eliminates the possible of spurious Mo signals arising from the grid material.  

Then, EDX was performed on the sample before and after vacuum annealing to form the GMO 

phase.  The resulting EDX spectra obtained from the sample are shown in Fig. 4.13.  In both the 

spectra measured before and after heating, the distinctive Mo peaks at 2 and 17 keV are clearly 

visible, and do not show any significant changes relative to the O peak.   

 

 

Fig. 4.10:  SAD pattern of a sample of GO mixed with Mo powder at room temperature (A) and after 
heating to 755° C (B). 
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Fig. 4.11:  IR absorption spectra of GO treated with Mo, and pristine GO as deposited onto a diamond 
window.  The spectrum of the clean diamond window is used as the reference spectrum. 
 

 

Fig. 4.12:  Comparison of pure GO deposited on a Mo TEM grid and the GMO phase prepared from GO 
deposited on a Mo grid. 
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Thus it is apparent that while the annealing process depletes the quantity of MoO2 present in the 

sample, the overall quantity of Mo present remains largely unchanged.   

 Based on these data two possible conclusions may be drawn: either Mo is a catalyst that 

creates GMO or Mo is a contaminant and the ordered phase observed in SAD is not GMO but 

rather an ordered structure into which Mo is incorporated.  The first conclusion is as follows:  

following exposure to Mo via a TEM grid, the aqueous GO solution incorporates atomic Mo.  

This Mo reacts with the oxygen functional groups in GO to form aqueous MoO2, which becomes 

intercalated between the GO layers during the drying process.  During annealing, a large strain is 

introduced following removal of some of the oxygen functional groups; this strain is relieved by 

the MoO2 giving up its oxygen to the carbon to form the double epoxide structures and 

ultimately ordered GMO.  The Mo then remains atomically adsorbed within the multilayer.  The 

second interpretation is as follows: following exposure to Mo via a TEM grid (or other means), 

the aqueous GO solution incorporates atomic Mo.  This Mo reacts with the oxygen functional 

groups in GO to form aqueous MoO2, which becomes intercalated between the GO layers during 

the drying process.  During annealing, both the Mo and the carbon in the GO give up their O 

atoms, and the remaining Mo atoms form an ordered overlayer on the graphene template.  The 

periodicity of the new phase identified in the SAD and HRTEM data are in agreement of the in-

plane spacings of Mo2C and Mo3C2, but lack the c-axis spacings of these structures.  The answer 

to these two questions is still largely being investigated and additional experiments are being 

developed to address the role of Mo in the ordered structures observed in SAD patterns (see 

section 4.3.4).  
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Fig. 4.13:  EDS spectra of a GO sample treated with Mo before (A) and after (B) heating the sample to 
form the GMO phase. 
 

 

4.3.4 Conclusions and Future Directions 

It has been proposed that the vacuum thermal reduction of multilayer GO films yields a 

composite material containing graphene and graphene monoxide nanocrystalline regions. The 

atomic structure of GMO is consistent with all experimental evidence from electron diffraction 

and IRMS and possesses an O:C = 1:1 stoichiometry, with double-epoxide GMO units arranged 

on a 2D quasi-hexagonal lattice. The semiconducting properties of GMO, predicted by ab initio 
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calculations, suggest that this new material, if it exists, might be useful for various electronic 

applications such as sensors, transistors, and optoelectronic devices, particularly considering its 

compatibility with graphene.   This discovery  of nanocrystalline GMO is a critical step to 

seeking methods to develop band gap controlled,  crystalline, monolayered graphene oxide that 

do not rely on multilayered materials.  An important question remains, however, namely the role 

of Mo in GMO formation, and whether the experimental evidence conclusively indicates the 

presence of GMO at all.   

To summarize, SAD and HRTEM experiments conclusively indicate that an ordered 

phase develops following annealing of GO that has been exposed to Mo in some fashion.  The 

data lends itself to interpretation, but experiments have yielded several indisputable facts 

regarding the evolution of the GMO phase:  first, the ordered phase that develops has a 

periodicity that is consistent with the relaxed lattice spacings of GMO as predicted by DFT.  

Second, IR experiments confirm that epoxide groups are present in the samples following the 

annealing treatments.  Third, Mo is still largely present in the sample following the formation of 

GMO.  Last, at present, it has not been possible to synthesize GMO without the presence of Mo.  

Both hypothesis on the role of Mo in the evolution of the SAD rings, namely that Mo either acts 

as a catalyst for the reaction of GMO growth or it incorporates itself into the final structure as a 

carbide, can explain all of these observations.  Regarding the measurement of the observed 

lattice spacings, both GMO and two Mo compounds including Mo2C and Mo3C2, have spacings 

that are consistent with those observed in the SAD patterns.  These compounds have other 

reflections with contributions from the c-axis order in the crystal structure that are not observed.  

This could be due to the lack of orientational order in the template GO material, resulting in 

misoriented 2D molybdenum carbide layers.  With regard to the second observation, the 
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presence of epoxide groups in the final samples is consistent both with the presence of GMO and 

with there being residual oxygen (epoxides) that persists following the reduction treatments.  

Third, it is clear that the Mo remains in the sample in some form following annealing to produce 

the new rings.  The presence of Mo in the final state of the samples could suggest either that Mo 

has changed its oxidation state and remains bonded at disordered sites in the multilayer or that 

the remaining Mo is in fact ordered and responsible for the development of the new rings.  

Lastly, the need for the presence of Mo can be explained either by Mo acting as a catalyst for the 

formation of GMO or by Mo becoming incorporated into the final structure that gives rise to the 

new SAD rings.  In addition, the two interpretations are not mutually exclusive and both 

interpretations could be correct and contributing to the results.   

A focused experiment that could directly address this question is an anomalous x-ray 

scattering measurement.  In this experiment, the use of a synchrotron source allows one to vary 

the wavelength of the incident  x-ray beam.  This allows for identification of elements 

contributing to the reflections in a diffraction pattern based on the dispersion of the material's 

dielectric function near an absorption edge.  The scattering factor for incident x-ray energies 

above the absorption edge picks up an imaginary component that affects the scattered intensity of 

a given reflection.  For example, by performing this experiment on the TRGO samples prepared 

with Mo, collecting an x-ray diffraction pattern using an incident x-ray energy above and below 

the Mo K-edge will indicate if Mo makes a contribution to the diffraction rings assigned to 

GMO.  If Mo is incorporated into the diffracting structure, the intensity of the GMO reflections 

will change relative to the graphene reflections as the x-ray energy is varied above and below the 

absorption edge.  These experiments are currently in the planning phase.   
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4.4 Chemically Reduced Graphene Oxide 

4.4.1:  Introduction to the Chemical Reduction Method  

Chemical reduction of GO was one of the first explored routes toward the goal of large-scale 

synthesis of graphene.  In the most commonly employed technique, which is the one employed 

here, aqueous GO suspensions are treated with N,N-dimethylformamide (DMF) for the purpose 

of dispersion, and are then exposed to hydrazine monohydrate at a slightly elevated temperature 

(~80° C) for 12 hours.  This process yields dispersions of monolayer RGO that can be deposited 

on arbitrary substrates.  Following drop-casting of the solution, the resulting films were dried and 

then subjected to a 200° C anneal for 1 hour to remove the remnant solvent.  Despite the 

extremely wide use of this method and the realm of application of the resulting materials, 

contradictory reports on the degree of residual oxidation, the nature of the remaining oxygen 

functional groups, and the electronic properties of the resulting material continue to inspire 

debate on this material.  In the work by Stankovich et. al., [39] the chemical reduction method 

was pioneered and the resulting material characterized.  Based on elemental analysis and core-

level photoemission measurements, the authors suggested that the oxygen content in RGO was 

lowered to a final C:O ratio of 10.7, with the predominant oxygen species the carbonyl group.  

This determination was based largely upon peak fitting of the C 1s peak in the XPS spectrum of 

the reduced material, and the assignment of the largest peak as being due to a C-N bond resulting 

from the hydrazine treatment.  This peak, however, was displaced by only 0.6 eV from the C 1s 

peak due to C-O bonds, and thus their assignment of the remaining oxygen groups to carbonyls 

seems dubious. Perhaps the most useful structural information on RGO prepared by chemical 

treatments has come from high resolution electron microscopy.  Using low-voltage aberration-
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corrected TEM, two groups investigated the structure of RGO [32, 40].  In both cases, it was 

found that the reduced GO had a substantially more ordered carbon network than GO, but was 

still riddled with defects ranging from residual oxidation to extended topological defects and 

even large quantities of etch holes.  Based on the HRTEM images alone, however, it was not 

possible to determine the type of remaining oxidation.   Eda et. al. [21] characterized  the 

electronic properties of RGO films, and found that while monolayer RGO films showed the 

characteristic ambipolar transport of graphene, thicker films showed a semimetallic behavior.  In 

contrast, field effect transistor (FET) measurements performed within our group (Fig. 3.13) 

showed that the RGO films as prepared by our method showed a p-type semiconducting 

behavior.  To this end, experiments have been performed on RGO films to further elucidate the 

structure of the remaining oxygen functional groups and their effect on the materials electronic 

properties.  Normal incidence IR transmission measurements were performed to probe the 

bonding and low energy electronic structure of this material.  

4.4.2 Sample Preparation 

Reduction of GO was achieved by a chemical treatment using hydrazine monohydrate.  The 

process has been described previously [41]; in brief, GO suspensions were prepared in aqueous 

solution as described above.  DMF was added to the aqueous solution for a volume fraction 

DMF:water=9 to achieve stability of the solution.  Lastly, hydrazine monohydrate was added and 

stirred for 12h at 80° C.  Samples for TEM were prepared by drop casting approximately 1 L of 

the resulting suspension onto a lacey carbon-coated Cu TEM grid.   
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4.4.3 Results and Discussion 

4.4.3.1 Selected Area Diffraction 

SAD measurements were performed on RGO multilayer films prepared as described above.  A 

representative SAD pattern of such a sample is shown in Fig. 4.14.  The pattern resembles the 

SAD pattern of unreduced GO multilayers shown in Fig. 4.1.  As before, only the in-plane 

reflections of graphene are observed, and a coarse ring pattern is present due to the random 

orientation of the samples.  This again yields the important information that on average the 

periodicity of graphene is preserved, and there is no stacking order along the c-axis.   

 

Fig. 4.14:  SAD pattern of an hydrazine-treated RGO multilayer. 

4.4.3.2 Electrical Transport   

Field effect transistor (FET) measurements have been performed on RGO produced by the 

chemical method to identify the majority charge carriers.  In this experiment, the RGO is 

deposited onto the interdigitated gold electrode substrate (Chapter 1), which is supported by a 
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300 nm SiO2 film on a Si wafer.  The Si wafer is used as the back gate and a circuit is connected 

to the gold electrode assembly.  When a voltage is applied to the back gate, the RGO sample is 

subjected to an electric field; this field has the potential to change the position of the Fermi 

energy of the sample.  Application of a negative voltage to the back gate causes a decrease in the 

Fermi level, while a positive voltage has the opposite effect.  As the gate voltage is modulated, 

the source-drain current is measured, providing an indication of the conductivity at a particular 

voltage.  FETs made with graphene show ambipolar transport, meaning that the current as a 

function of applied voltage is V-shaped and symmetric about 0V [1].  This indicates that in 

pristine graphene, the charge carriers can easily be converted from electrons to holes.  Some 

reports on the transport properties of RGO have shown a similar behavior to graphene, where 

ambipolar transport is observed at room temperature [21, 42].  In contrast, our RGO samples 

show transport properties as seen in Fig. 4.15.   In this case, the source-drain current has its 

maximum value at the lowest gate voltage, and decreases continuously as the gate voltage 

increases.  The continual decrease of ISD even above 0V indicates that our RGO samples do not, 

in fact, show ambipolar transport.  Rather, they behave as a p-type semiconductor.  The 

application of a negative gate voltage lowers the Fermi level, increasing the number of holes 

available for conduction, whereas a positive gate voltage has the opposite effect.  As shown 

below, the reason for this behavior is residual oxygen groups that effectively open a gap in the 

density of states, leading to p-type transport. 
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Fig. 4.15:  Transport properties of RGO FET devices.  The source-drain current, ISD, increases with 
decreasing gate voltage, indicating p-type conduction is dominant. 

 

4.4.3.3  IR Spectroscopy 

IR transmission measurements of RGO were performed on samples prepared on diamond 

windows.  Fig. 4.16A shows a representative absorption spectrum from a thin film or RGO 

measured in the transmission geometry from 7500-650 cm-1, with an enlargement of the 1200 

cm-1 band in 4.15B.  Throughout the mid-IR region, there are three prominent absorption bands 

with peak positions at 1735, 1580, and 1238 cm-1.  The band at 1735 cm-1 is unambiguously 

assigned to the C=O bond stretching mode of the carbonyl groups.  The 1580 cm-1 band is due to 

the C=C stretching of the graphitic part of the substrate, and the 1238 cm-1 is assigned to the 

epoxide C-O-C stretching vibrations.  Examination of the lineshape of this mode reveals an 

asymmetric profile, with additional intensity on the low-frequency side of the band.  For a 

bridge-bonded atomic adsorbate, such as the epoxide group,  
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Fig. 4.16:  IR spectra of RGO as determined from NIT measurements.  The measurements are performed 
with RGO samples deposited onto diamond windows, with the spectrum of the clean window used as the 
reference.  B) shows an enlargement of the 1200 cm-1 band in (A). 

 

two bond-stretching vibrational modes are expected corresponding to the symmetric and 

asymmetric stretching modes.  These two modes, which are close in energy, are clearly 

superimposed on the broad band at 1200 cm-1.  Additionally, it is possible that the band is 

comprised of more than just the two peaks corresponding to symmetric and asymmetric 

stretching.  Assignment of the origin of these bands is a formidable task; since the C-O-C modes 

are so close in energy to the phonons of the substrate, the vibrations of the epoxide group couple 

strongly to the vibrations of the lattice.  Thus, any attempt to calculate the normal modes of 

vibration using first-principles computations leads to a nearly intractable set of IR active modes 

in which the modes of the substrate dominate.  In addition, the tendency of oxygen groups in GO 

and RGO to cluster, discussed below, further complicates the interpretation of the normal modes 
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that are possible.  Of the numerous attempts made to identify the symmetric and asymmetric 

stretching vibrations using DFT modeling, the relative energies of the symmetric and asymmetric 

stretching frequencies were strongly dependent on the symmetry of the unit cell or cluster chosen 

for the calculation.  Depending on the initial structure and level of theory chosen, the symmetric 

stretching frequency could be either higher or lower than that of the asymmetric stretch.  In 

addition, the stretching of the two carbon atoms which hosts the epoxide oxygen atom also 

produces an IR active mode that would have no analogy for, e.g., a metal substrate.  All of these 

modes likely contribute to the absorption between 1000-1300 cm-1.   

4.4.3.4  Electronic Structure 

The spectrum in Fig. 4.16 shows, in addition to vibrational absorption, a strong background 

absorption that increases with increasing frequency.  Broadband absorption in the mid IR in 

graphene-based materials has been studied extensively in the context of its electronic structure.  

Interband transitions between the valence and conduction bands in intrinsic monolayer graphene 

produce a flat, "universal" absorption over the entire mid-IR [43]; electrostatic doping produces a 

threshold to the absorption at 2Ef  [44].  The broadband absorption seen in Fig. 4.16 can also be 

assigned to interband excitations; however, it does not have the characteristic constant absorption 

value of monolayer graphene.  Rather, there is a low energy threshold above which the 

absorbance continues to rise monotonically.  Based on the transport measurements and IR 

spectra discussed above, it is reasonable to attribute this absorption to an M-type critical point 

resulting from a gap in the density of states.  In the vicinity of such a critical point, the JDOS has 

a characteristic dependence proportional to ඥ԰߱ െ  ௚ (see Ch. 2).  Optical measurements of theܧ

band gap are carried out by calculating the square of the absorbance, which produces a linear 

dependence of the absorption on photon frequency in the vicinity of the gap.  The value of the  
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Fig. 4.17:  Frequency dependence of the absorption squared for RGO transmission measurements.  The 
intercept indicates the magnitude of the gap. 

 

energy gap is then determined by finding the intercept of the linear dependence.  The method is 

shown in Fig. 4.17 for the spectrum in Fig. 4.16.  The square of the absorbance produces a very 

nearly linear dependence throughout the mid IR and the extracted value of the energy gap is 

approximately 1900 cm-1 (≈0.24 eV).  Thus the observed lineshape is consistent with the 

absorption expected with a direct-gap semiconductor. The measurements provide an overall 

estimation of the average electronic behavior in this inhomogeneous material at mesoscopic 

length scales 

 Next, it is logical to inquire into the origin of the gap observed in the measurements.  The 

oxygen dopants, in the form of epoxide and carbonyl functional groups, both have the potential 

to perturb the electronic structure.  Measurements done on a number of samples indicate, 
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however, that the presence and amount of carbonyl groups (as well as CHx groups) are not 

constant from one sample to the next.  These groups most likely are present at edges and defects 

in the samples.  Fig. 4.18 compares  

 

Fig. 4.18:  Comparison of the spectrum in Fig. 4.15 with a spectrum from another sample in which the 
relative C=O content was lower.  A qualitatively similar behavior of the background absorption is 
observed. 

 

the IR spectra from two different samples; the spectrum from Fig. 4.16 is compared to a 

spectrum from a sample that had a much lower concentration of C=O.  The ratios of the 

integrated intensity of the C=O peak to the C=C peak of the two spectra are 0.13 and 0.32, 

indicating a significant change in the overall concentration of C=O.  The thickness and therefore 

the background absorption strength is different for the two samples, yet qualitatively they show 

the same trend in the background absorption and yield very similar values of the optical gap. 
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This suggests that the carbonyl groups are not the dominant contributor in determining the 

optical properties.  This is not surprising; the carbonyl groups are likely to be present at edges 

and defects, where localized states would be expected, and would likely have minimal effect on 

the optical properties even in the absence of the carbonyl termination. 

 Having identified the epoxide group as the most likely contributor to the optical gap, 

DFT calculations were performed to model the substrate.  Some theoretical data already existed 

in the literature at the time of this work [35, 45-47]; however, it was important to produce 

calculations closely aligned to experimental measurements that could be used as a comparison 

and for modeling adsorption at the RGO surface, as discussed in the subsequent chapters.  The 

results indicated that the overall substrate electronic structure is acutely sensitive to the 

concentration of oxygen functional groups.  The calculations are performed using a 3×3 

graphene supercell with different numbers of oxygen atoms.  Fig. 4.19 shows the results for two 

representative structures: a 3×3 supercell with a single epoxide group at the center of the cell (B), 

and a 3×3 supercell with two epoxide groups decorating opposite sides of the basal plane (C).  

The bare supercell with only graphene is shown for comparison in (A).  The calculated band 

dispersions along the high symmetry directions for the structures in 4.19 A-C) are shown in Figs. 

4.19 D-F), respectively.  The total densities of states (DOS) for the three structures are shown in 

Fig. 4.20 A-C).  The data show that for the C18O stoichiometry (4.19 B), the material remains a 

gapless semiconductor with the valence and conduction bands touching at the K-point, as for the 

case of pure graphene.  Doubling the oxygen concentration as in Fig. 4.19 C, however, does open 

a gap at the K-point of approximately 0.7 eV.  These features are also reflected in the calculated 

total DOS in Fig. 4.20, where only the structure from 4.18 C shows an actual gap.     
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 Establishing that the epoxide groups can induce a gap in the DOS is consistent with 

previously published experimental data.  Hossain et.al. [48] showed that when epitaxial graphene 

samples were exposed to atomic oxygen, low coverages of epoxide groups were formed to 

permit examination of single epoxide groups using scanning tunneling microscopy (STM).  The  

 

Fig. 4.19: Atomic structures of graphene (A) and graphene with one (B) and two (C) epoxide groups in a 
3×3 supercell.  The band dispersions of the structures in A-C) are shown along the high symmetry 
directions  in D-F), respectively. 
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Fig. 4.20:  Calculated total DOS for the structures in Fig. 4.19.  A) 3×3 graphene supercell, B) with 1 
epoxide group, C) with 2 epoxide groups.   

 

STM images showed that a single epoxide group caused a significant change in the density of 

states extending over regions as large as 1.2 nm (≈5 graphene lattice constants or 8 C-C bond 

lengths).  In addition, valence band photoemission measurements showed that the oxidation 

substantially reduced the density of states near the Fermi level, consistent with the calculations 

and experiments shown here.        

 It is important to note that it is highly unlikely that the actual material contains ordered or 

even stoichiometric oxidation. Previous experimental [9, 29, 32, 40, 49] and theoretical [47] 
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works have shown that oxygen atoms in GO and RGO have a propensity to cluster, leaving 

segregated graphitic and oxidized regions.  A single oxygen adsorbate on an otherwise pristine 

graphene lattice introduces a large amount of local strain to the neighboring carbon atoms [22, 

47, 48], causing a protrusion normal to the carbon basal planes.  This strain is stabilized when 

additional oxygen functional groups are located on the opposite side of the basal plane.  

Consequently, configurations of the type in Fig. 4.19B in which oxygen atoms are adjacent but 

on opposite sides of the basal plane have a much higher binding energy [50] and are thus more 

likely to represent the configuration of the oxygen functional groups that persist following 

reduction.  The IR measurements probe a micrometer-scale area, and effectively average over the 

oxidized regions, graphitic regions, and intermediate regions.  A more realistic comparison of the 

theoretical modeling to the actual measurement would be to apply a substantial broadening to the 

DOS plots shown in 4.20.  This interpretation is justified: in the limit of total disorder, 

amorphous semiconductors often reflect electronic properties similar to their ordered 

counterparts, but with an overall broadening in the DOS [51] and hence the optical properties.  In 

light of this correspondence, the gap discussed in the context of RGO may not be a bona fide 

"band gap", since the oxygen adatoms are not ordered, but rather a gap in the DOS across which 

optically active excitations exist.   Thus, the calculations are intended only to show that, at 

sufficient concentrations, the epoxide groups can open a gap in the density of states and also to 

assess how the occupation of the electronic states change upon adsorption of small molecules.   
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4.4.4 Conclusions 

Following chemical reduction of GO, the resulting RGO material has oxygen functional groups 

including carbonyl and epoxide.  The epoxide groups make the perturbation to the electronic 

structure, and depending on the oxygen concentration, can open a gap of variable size in the 

DOS, as suggested by  DFT calculations.  This is supported by IR measurements that show on 

average, the energy gap is ≈0.2-0.25 eV.  The presence of the epoxide groups renders the 

collective RGO material a p-type semiconductor.  

  

4.5 Dimensionality Effect on the Optical Properties of RGO; SnO2/RGO 

Heterostructures 

4.5.1 Introduction 

 Heterostructures consisting or RGO decorated with SnO2 nanocrystals were investigated 

experimentally using electron microscopy and IR microspectroscopy.  These materials are of 

interest from several technological viewpoints; first, the addition of the SnO2 to the RGO 

enhances its sensitivity to NO2 [52, 53].  Second, SnO2/graphene composites can be used in 

energy applications such as supercapacitors [54] and lithium ion batteries [55].  Lastly, the 

electronic and optical properties of nanocrystal/graphene hybrids are of fundamental interest, 

particularly in the IR region where the most significant features of graphene's electronic structure 

are found.  Here, the structure of SnO2/RGO hybrids is considered in conjunction with the low-

energy spectral properties of the composite system.         
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4.5.2 Methods and Synthesis 

 SnO2/RGO heterostructures were described as follows:  GO was synthesized using as 

described above.  Sn4+ ions were introduced into the GO solution and electrostatically adsorb 

onto the GO surfaces [53].  Subsequently, the solution was centrifuged, the precipitate was 

collected and washed, and air-dried overnight at 80°C.  The final SnO2/RGO hybrid was 

obtained by annealing the dried material at 350°C in an Ar atmosphere for 1 hour.  This material 

was then resuspended in aqueous solution and sonicated.  Normal incidence IR transmission 

measurements were performed at IRENI using samples deposited on diamond windows.    

4.5.3 Results and Discussion 

 The observed behavior of the broadband optical absorption of RGO near the energy gap 

showed the characteristic behavior of a three dimensional material in the vicinity of an Mo-type 

critical point (Fig. 4.16, 4.17).  As was discussed in Chapter 2, when the electronic structure 

depends on three components of the electronic wavevector, the resulting form of the JDOS has a 

ඥ԰߱ െ  ௚ dependence.  The three-dimensional behavior of the optical properties arises becauseܧ

of the multilayer structure of the samples being considered; the interaction of a given RGO layer 

with the adjacent layers causes the energy to depend on all three components of the wavevector.  

This is notably different from the case of monolayer graphene, in which the electrons are 

confined to a single atomic layer resulting in a frequency independent ("universal") value of the 

conductivity and hence the absorption above the band gap [43, 44].  This effect of multilayer 

structure has resulted in deviation from the ideal universal absorbance even for the case of a 

single bilayer [56, 57], as well as graphene samples containing more than 2 layers [58].    
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 Multilayer structures of RGO with SnO2 nanocrystals decorating the individual sheets are 

different in this respect; the SnO2 nanocrystals lying on the basal planes have the effect of 

decoupling the layers, so that even when multilayer structures of the SnO2/RGO are fabricated 

by drop-casting from solution, the distance between the individual carbon layers is sufficiently 

large so as to render each layer as an independent 2D sheet.  Fig. 4.21 compares the IR 

absorption spectrum of pure RGO (A) with that of an SnO2/RGO multilayer structure (B).  The 

vibrational absorption features in the SnO2/RGO structure are essentially the same as those in the 

chemically-prepared RGO.  Bands are observed at 1730, 1580 and 1230 cm-1 within a few 

wavenumbers of the band positions observed in undecorated RGO (4.21A).  This indicates that 

despite a fairly different route toward reduction, the RGO component of the SnO2/RGO 

heterostructure has the same functional groups as the hydrazine-reduced RGO.  The  spectrum in 

4.21B also shows a peak at 670 cm-1  due to the IR active Eu  mode of the SnO2 nanocrystals.  

The largest difference between the two spectra is the overall broadband absorption, which shows 

a notably different character throughout the IR region.  Rather than an absorption threshold that 

increases continuously with wavelength, as observed in Fig. 4.21A, the spectrum of the 

SnO2/RGO shows a sharp absorption threshold that levels to a constant value throughout the IR 

region.  This is a direct manifestation of the dimensionality effects induced by the SnO2 

nanocrystals; rather than having a three-dimensional multilayered graphitic structure where 

adjacent layers interact to modify the optical properties, the finite size of the SnO2 nanocrystals 

intercalated into the structure effectively decouples every layer.  Since each layer is effectively 

independent, no interlayer hopping can occur and the electron energy levels in the RGO depend 

only on two components of the wavevector.  Consequently, the composite structure demonstrates 

an absorption profile consistent with a 2D JDOS, which is the case observed in graphene 
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monolayers [43, 44].  Thus while the two pieces of data consistently indicate the presence of a 

gap in RGO, dimensionality effects ultimately dictate the functional dependence of the 

broadband absorption.   The primary difference in the electronic structure of the multilayer RGO 

versus the decoupled SnO2/RGO is most likely a difference in the dispersion of the  bands 

around the K-point.  This is the case observed for the evolution of the bands of intrinsic graphene 

from a single to an ordered bilayer; in both cases the material has zero band gap, but the band 

dispersion becomes parabolic in the bilayer case. 

 Lastly, note that misoriented graphene multilayers (e.g., twisted bilayer graphene and 

multilayer extensions) have additional bands that could potentially produce optically active 

electronic transitions.  For a twisted bilayer, the electronic structure can be thought of as a 

misorientation of two hexagonal Brillouin zones; the region in K-space where the  bands 

overlap produces an additional band that would not be otherwise observed in the case of 

monolayer graphene.  Tabert and Nicol [59] reported that this effect is likely to manifest itself in 

the optical spectra as additional peaks.  Such features are not observed in our data most likely 

because the twist angles between each adjacent layers is sufficiently large that these transitions 

are outside of the IR frequency range.  Additionally, since the layers are randomly oriented, all 

possible twist angles coupled with translations are possible in the real samples, and the possible 

optical transitions due to the interlayer coupling are effectively averaged out.     
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Fig. 4.21:  Comparison of the IR absorption of RGO (A) and SnO2/RGO (B).  In both cases, the reference 
is the clean diamond window. 
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Chapter 5: Exploring Adsorption and Reactivity of NH3 on Reduced 

Graphene Oxide 

The adsorption of Ammonia on RGO was studied through a combination of in situ IR 

spectromicroscopy experiments and density functional theory (DFT) calculations.  The 

measurements were performed under realistic sensor operation (ambient pressure and 

temperature) to correlate observations with behavior in actual devices.  The extremely 

heterogeneous substrates lead to a large number of absorption configurations and a rich 

vibrational spectrum.  To understand the origin of these bands, DFT modeling of the interaction 

between the adsorbate and different representative sites in the substrate was performed.  Based 

on comparison of the predictions of the theoretical models and experimental vibrational band 

frequencies, the overall behavior following adsorption on RGO is determined.   
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5.1 Introduction 

Graphene is increasingly being utilized  for applications such as gas sensing and heterogeneous 

catalysis that require good electrical conductivity, high surface area, and potentially reactive 

substrates. For example, single atomic layers of graphene produced by mechanical exfoliation of 

graphite have demonstrated single molecule sensitivity towards target gas molecules in ultrahigh 

vacuum (UHV) conditions.[1]  Despite this impressive performance at low pressures, many 

applications would require sensitivity towards extremely low quantities of gases diluted in air. 

The relatively weak interaction between intrinsic graphene and most molecules would produce 

an intractably small signal under normal working conditions, thus hindering the implementation 

of graphene in ambient pressure sensing conditions. The interaction between graphene and most 

molecules of interest can, however, be enhanced by the introduction of chemically active defects.  

Materials such as graphene oxide (GO)[2, 3] and reduced graphene oxide (RGO)[4] are rich with 

such defects,[5, 6] including residual oxygen functional groups and a host of structural defects to 

the carbon lattice. In contrast to GO, RGO is highly conductive,[7] thus allowing for sufficient 

signal-to-noise ratio to detect low concentrations of target gases.  Indeed, gas sensors that 

employ RGO have demonstrated impressive sensitivity, selectivity, and recovery time under 

realistic working conditions toward NH3, a chemical of particular industrial and environmental 

relevance,[8-11] including as a means for storage and transportation of hydrogen.[12]  Despite 

these demonstrations of the advantage of using RGO in sensing applications, and its potential  in 

the closely related field of catalysis, little experimental evidence exists to elucidate the nature of 

the interaction between the RGO substrates and target gases. Furthermore, adsorption of small 
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molecules is a possible method of molecular doping to engineer electronic properties of 

graphene.[13-15]  Thus it is important to study the adsorption of these molecules onto RGO to 

gain a fundamental understanding and to optimize RGO for real applications.   

 IR microspectroscopy is ideally suited to probe these processes.  Unlike many other 

surface sensitive techniques, IR can be performed under ambient atmospheric pressure, i.e., 

realistic working conditions, and it does not require well-ordered surfaces and/or interfaces to 

extract useful structural and chemical information.  Here we report in situ IR microspectroscopy 

studies of NH3 adsorption on RGO in conjunction with density functional theory (DFT) 

calculations to model the adsorption under various scenarios. We find evidence for molecular 

species adsorbed on the surface, and experiment and calculations are correlated to identify the 

chemical nature of these adsorbates. In particular, oxygen species and carbon vacancies can 

facilitate surface reactions with NH3, resulting in strongly chemisorbed adsorbates, in contrast to 

the case of pure graphene in which physisorption occurs with comparatively minimal effect on 

the substrate electronic properties. 

 

5.2 Methods 

RGO suspensions in N,N-dimethylformamide (DMF) were prepared as described previously[4].  

Samples for IR microspectroscopy were prepared for transmission experiments by depositing a 

small quantity of the RGO dispersion onto IR transparent diamond windows. For the in situ 

measurements, the substrates were placed in a custom flow cell[16] that employs 0.5 mm IR 

transparent diamond windows for transmission measurements.  IR microspectroscopy was 

performed at the synchrotron radiation center, using the multi-beam Infrared Environmental 
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Imaging (IRENI)[17, 18]  beamline in the spectral range 7,000-650 cm-1. The beamline employs 

a Bruker Hyperion 3000 IR microscope equipped with both a Mercury Cadmium Telluride 

(MCT) single point detector and a focal plane array (FPA) detector.  The flow cell was pumped 

on by an external exhaust system, producing a weak vacuum environment.  1% NH3 diluted in 

Ar was subsequently pumped through the flow cell at a flow rate of 28 mL/min. Ar was chosen 

as an inert balance gas of the diluted mixture to mimic UHV conditions and highlight only the 

surface chemistry of the target gases and not that of ambient atmospheric components.  

Transmission measurements were performed in situ by collecting background single beam 

spectra on the sample using a 74× objective of NA=0.65, effectively illuminating the samples 

with a cone of radiation with field components both parallel and perpendicular to the sample. 

Single beam spectra were recorded at the exact same position as the reference spectra to produce 

differential absorption spectra during exposure to the gases, highlighting only changes due to the 

adsorption.  Individual spectra were collected for approximately 3 minutes.   

 Plane-wave density functional theory (DFT) calculations and geometry optimization were 

performed with the QUANTUM ESPRESSO package[19] using the Perdew-Zunger local density 

approximation (LDA)[20] for the exchange-correlation potential. Ultrasoft pseudopotentials with 

a plane-wave cutoff of 30 Ry (~408 eV) for the wavefunction and 300 Ry (~4082 eV) for the 

charge density were used to represent the interaction between ionic cores and valence electrons. 

A convergence threshold of 10-8 eV was set for the energy self-consistency and the forces were 

relaxed to 0.005 eV/Å.  Integration over the Brillouin zone was performed on a regular 12×12×1 

Monkhorst-Pack k-point grid.  The computational unit cell consists of a 3×3 graphene supercell 

with a single NH3 molecule adsorbed at different sites.  The unit cell for defective graphene has 

one vacancy and that for RGO has one epoxide group in a 3×3 supercell. A vacuum region of 12 
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Å was considered to separate the layer and its image in the direction perpendicular to the 

graphene plane.  The adsorption energy, Ea, is defined as the difference between the energy of 

the system with a bound NH3 molecule and the sum of the energy of the isolated molecule and 

the graphene layer.  The charge transfer from NH3 to graphene, defective graphene and RGO 

was calculated on the basis of Löwdin population analysis.[21] 

5.3 Results 

5.3.1 IR Spectra of Bare and Adsorbate-Covered RGO 

The structure and composition of RGO was discussed in Chapter 4.  To summarize, the 

properties of RGO can vary dramatically based on the preparation method, but it is generally 

accepted [22] that RGO is not the same as graphene, and that residual oxygen functional groups 

are always present to some extent, as previously reported for the case of the hydrazine-reduced 

GO presented here.[4]  To understand the nature and effect of residual oxygen groups in our 

chemically RGO samples, an IR absorption spectrum of few-layer RGO for 5000-650 cm-1 is 

shown in Fig. 5.1A.  Several vibrational absorption bands indicate the average chemical status of 

the reduced material.  The band at 1200 cm-1 is assigned to the COC stretching modes of the 

remaining epoxide groups, and the band at 1730 cm-1 is due to remaining carbonyls.  The band at 

1580 cm-1 is due to the C=C stretch of the graphene lattice, which becomes IR active due to the 

presence of defects.  Throughout the mid-IR region, strong background absorption is observed 

that approaches zero at lower energies and monotonically increases at higher energies.  

Absorption in the mid IR region has previously been ascribed to direct interband transitions 

between valence and conduction bands for the case of monolayer graphene, [23] and interband 

transitions between the nearly parallel valence and conduction bands for the case of multilayer 
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graphene. [24-27]   When comparing the absorption spectrum of few-layer RGO to that of pure 

graphene, [28] the decrease in the absorption at lower photon energies is due to oxygen 

functional groups that effectively open a band gap and suppress interband transitions at lower 

photon energies.  This gap is particularly evident in the functional dependence of the broadband 

IR absorption.  For the case of an M0-type critical point, the joint-density of states (JDOS) 

coefficient is proportional to the square root of the photon frequency. [29] Squaring the 

absorption coefficient and finding the intercept of the linear trend gives the value of the band 

gap.  Fig. 5.2 shows the square of the absorption coefficient of the sample for 6000-650 cm-1 

with the linear dependence of the absorption.  The energy gap is found by the intercept of the 

linear dependence to the data at Eg=0.25 eV (2000 cm-1).  This behavior clearly indicates the 

semiconducting nature of RGO, one of the features that make it particularly attractive as a 

sensing material.  Due to the wide variability and inhomogeneity of substrate structure and 

composition though, it is likely that a range of values for the local energy gap exists based on 

domain sizes and local oxidation.   
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Figure 5.1: Absorption spectra of RGO and NH3/RGO.  A)  IR absorption spectrum of RGO.  The 
primary functional groups are due to epoxide (C-O-C, 1200 cm-1) and carbonyl (C=O, 1740 cm-1) groups, 
with few minority CH (2800-3000 cm-1) and OH (3000-3600 cm-1) groups. In this spectrum, the clean 
diamond window is used as the reference.  B)  Differential IR absorption spectrum of RGO exposed to 
1% NH3 diluted in Ar at a flow rate of 28 mL/min.  In this spectrum, the RGO sample before exposure to 
NH3 is used as the reference for the measurement.  C) Enlargement of the N-H stretching region from B) 
to show the different components of the broad band from 3000-3500 cm-1.      
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Figure 5.2:  IR absorption of RGO (from Fig. 5.1) squared overlaid with a linear extrapolation to the 
intercept.  The best agreement is obtained for Eg=0.25 eV (2000 cm-1).  The feature at ~3700 cm-1 is due 
to incomplete water vapor cancellation during the measurement. 

 

 The interaction of NH3 with RGO is now considered.  Fig. 5.1B shows a representative 

differential IR absorption spectrum of RGO collected following 30-minute exposure to 1% NH3 

diluted in Ar at a rate of 28 mL/min at atmospheric pressure.  A broad, intense band is observed 

in the N-H stretching region (3000-3500 cm-1), with several other bands observed in the N-H 

deformation region (900-1700 cm-1), and two bands in the far IR region (<900 cm-1).  A close 

observation of the NH stretching band reveals the presence of numerous overlapping bands, 

evidenced by shoulders and irregular changes in slope comprising the primary peak.  To 

emphasize these features, an enlargement of the stretching region is shown in Fig. 5.1C.  The 

most pronounced features are observed at 3100, 3136, 3160, 3190, 3208, 3230, 3245, 3270, 

3285, 3320, 3360, 3400, 3420, and 3453 cm-1.  Fourier Self Deconvolution (FSD) is applied (Fig.  
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5.3) to the raw spectral data to emphasize these bands and more clearly demonstrate their 

presence.   

 

Figure 5.3:  Application of FSD to NH3/RGO differential spectra to emphasize the presence of the peaks 
given in the main text. 

 

In the bending region, peaks are observed at 1682, 1623, 1540, 1508, 1440, 1374, 1300, 1158, 

1070, and 942 cm-1; the far IR region shows bands at 820 and 700 cm-1.  Additionally, a 

reduction of intensity at the frequency of the COC stretch of the substrate is observed at 1225 

cm-1.  This change is slightly obscured due to the presence of other nearby absorption bands, but 

nevertheless clearly shows that the intensity of the frequency falls below the spectral baseline.  

This decrease is particularly evident from spectra taken at shorter exposure times, corresponding 

to lower coverage (Fig. 5.4).   
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Figure 5.4:  Time-dependent NH3/RGO differential absorption spectra for exposure times ranging from 1 
to 20 minutes (bottom to top, respectively) at a flow rate of 28 mL/min. 

 

To better understand the origin of these absorption bands, the adsorption process was 

modeled using DFT calculations.  Existing experimental data was considered to model the 

substrate atomic structure.   High-resolution electron microscopy studies[6] have shown that 

RGO is quite heterogeneous, and contains regions that are basically graphene-like (graphitic) 

with minimal defects and dopants; contaminated or oxidized regions; and various types of 

structural defects including carbon vacancies, etch holes, and extended topological defects.  

Additionally, the IR data in Fig. 5.1 indicates that the majority oxygen species is the epoxide 

group.  Whereas GO is commonly thought of as containing randomly distributed oxygen groups, 

theoretical studies have suggested that oxygen groups likely aggregate in island-like regions,[30, 
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31] consistent with published data [6].  Thus, to model molecular adsorption on the RGO 

surface, three structural models were considered with and without NH3 (Fig. 5.5): Case A  (Figs. 

5.5 A, D) graphitic regions; Case B  (Figs. 5.5B, E) oxidized regions containing a single epoxide 

group; and Case C  (Figs. 5.5C, F) defective regions with a  carbon vacancy.   While RGO is in 

reality far more complicated than any simple combination of the aforementioned models, the 

approach is to identify simple but realistic models containing the dominant interactions between 

NH3 and the RGO substrate in order to help identify  the most significant features in the IR 

absorption spectra from NH3/RGO.     Although RGO contains carbonyl groups, as evidenced in 

the IR spectra in Fig. 5.1A, the interaction of NH3 with carbonyl groups was not modeled 

theoretically, but adsorption at these sites (Case D) was still considered on the basis of empirical 

evidence.  Each of these types of bonding sites are considered in turn below and correlated with 

families of peaks observed in the IR data. 

5.3.2  Adsorption at Different Sites in RGO, Modeling and Band Assignments 

5.3.2.1 Case A:  NH3/Graphene 

First consider case A, the NH3 adsorption on pristine graphene.  To find the most 

favorable adsorption configuration, the NH3 molecule is initially placed at different positions and 

in different orientations on the graphene sheet. The optimized structure has an adsorption energy 

of -0.12 eV, with the NH3 molecule adsorbed at the 6-fold hollow sites, 2.94 Å above the carbon 

basal planes with the H atoms pointing away from the graphene sheet, as depicted in Fig. 5.5D. 

The optimized structure with NH3 adsorbed at the 6-fold hollow site and H atoms pointing 

toward the graphene sheet has adsorption energy of -0.11 eV. For the NH3 molecule adsorbed 

either on a C-top or bridge site, the adsorption energy is -0.1 eV, irrespective of the orientation of 
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the H atoms, and the molecular geometries are essentially unchanged upon structural relaxations. 

In the actual sample, which is disordered and complex, a combination of these respective 

adsorption sites is likely due to the very small energy difference between the different 

configurations.  The calculated results indicate a weak interaction for this configuration, 

suggesting that NH3 molecules physisorb at the surface.  The calculated density of states (Fig. 

5.6) is nearly identical to a superposition of graphene and gas-phase NH3, and shows that NH3 

adsorption has little effect as a dopant, and the optimized adsorbate-substrate geometry (Table 

5.1) shows that adsorption at such regions has a minimal effect on the molecular geometry as 

compared with the free molecule.  Thus only minor changes to the vibrational frequencies 

compared to the gas phase values are expected.  This scenario is consistent with the bands 

observed in the in situ experiments in the bending region at 942 and 1623 cm-1 and in the 

stretching region at 3320, 3420, and 3453 cm-1.  The bands at 3420 and 3453 cm-1 are assigned to 

the degenerate asymmetric stretch, with the symmetric stretch at 3320 cm-1.  The bands at 1623 

and 942 cm-1 are due to the asymmetric and symmetric deformation modes.  The experimental 

gas phase values of the symmetric and asymmetric stretches are 3337 and 3444 cm-1, the 

experimental asymmetric deformation is at 1626, and the symmetric deformations (split due to 

inversion doubling) are at 932 and 968 cm-1.[32]  The observation of two bands rather than one 

on either side of the gas phase value of 3445 cm-1 in our spectra arises due to the splitting of the 

doubly degenerate E vibration following the lowering of the molecular symmetry upon 

adsorption.  These values are in agreement with previously calculated values for fundamental 

frequencies of NH3 on graphite.[33]  While this model suggests adsorption at the high-symmetry 

6-fold hollow sites is favorable, the real samples are not pristine graphene, and adjacent defects 
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can lower the effective site group symmetry and lead to the observed splitting, such as the case 

for NH3 molecules that adsorb at the carbon atoms adjacent to epoxide groups (Fig. 5.7).   

 

Figure 5.5:  Structural models of RGO and NH3 adsorption on graphene and RGO.  A-C) 3×3 
supercells used to model bare RGO containing (A) pristine graphene (Case A of main text), B) graphene 
with a single epoxide group (Case B) and C) graphene with a carbon vacancy (Case C).  The relevant sites 
for which NH3 can adsorb are carbon-top (Ct), 6-fold hollow (H), bridge (B), vacancy (V), and oxygen-
top (Ot).  D-F) Optimized geometries for NH3 adsorption on the constituent regions in RGO.  D) Case A:  
NH3 molecules adsorb molecularly on pristine graphene at the 6-fold hollow sites.  E) Case B:  NH3 
molecules that adsorb near epoxide groups  dissociate, resulting in NH2 and OH groups sitting at opposite 
C-top sites.  F)  Case C: NH3 molecules adsorbed at defects are dissociated into NH2 and H bonded to 
next nearest neighbor carbon atoms. 

  

 The adsorption of NH3 multilayers on graphite has been previously investigated by 

infrared reflection-absorption spectroscopy under conditions used for most surface science 

experiments (single crystal in UHV).[34]  The reported stretching bands due to NH3 were located 

at 3300 and 3380 cm-1, notably lower in frequency than the values reported here.  These bands 

were attributed to the formation of crystalline NH3 multilayers, similar to solid NH3, after dosing 

the surface at 95 K, and were removed entirely at 105 K.  These conditions are certainly 
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significantly different than the case observed here.  In addition, in the experiments shown here 

the NH3 absorption bands eventually saturated in intensity as the NH3 exposure time continued 

(Fig. 5.8).  This suggests a Langmuir-type adsorption is dominant, rather than a Brunauer 

Emmett Teller (BET)-type multilayer adsorption. 

 The band observed in the deformation region at 1440 cm-1 is also considered here.  This 

band is in a frequency region characteristic of the NH deformation vibration of NH4
+ (gas-phase 

vibrational frequency of 1447 cm-1).  In addition, the peaks observed in the stretching region at 

3136 and 3160 cm-1 are very close to the gas phase NH4
+ stretching value of  3145 cm-1 and arise 

due to the splitting of the degenerate T2 vibration.[32]  The formation of NH4
+ from NH3 under 

the given experimental conditions is not surprising since the studies are performed under ambient 

atmospheric conditions, where these ions are likely formed following reaction of the NH3 with 

atmospheric or adsorbed water molecules or minority residual hydroxyl groups.  

 

Figure 5.6:  Comparison of the density of states for pristine graphene and graphene with a single NH3 
molecule adsorbed at the 6-fold hollow site in a 3x3 unit cell. A Gaussian broadening of 0.13 eV (0.01 
Ry) has been used. 

  



www.manaraa.com

148 
 

 

 

Figure 5.7:  Optimized geometry of the most favorable site adjacent to an epoxide group for NH3 
adsorbed on graphene with a single epoxide group.   
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Figure 5.8:  Integrated intensity of the NH stretching region as a function of exposure time.  A 
particularly thin sample was used for this analysis, as thicker samples continued to intercalate 
continuously and would take much longer to saturate in intensity.  The data is overlaid with a polynomial 
fit to show the plateau in intensity as a function of time.  A gap of 8 minutes in the data is due to the 
examination of several portions of the sample during the experiment.  During the time gap, another region 
of the sample was examined, and we then returned to the original region.   
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Structure   N‐H bond length (Å)   H‐N‐H angle (degrees)  

NH3 isolated molecule   1.02   108 

NH3 on graphene (Fig. 3a)  1.02   108  

NH3 dissociated on graphene 

vacancy to form NH2+CH (Fig. 

3c) 

1.02   117  

NH3 on graphene with an 

epoxide group (Fig. S5) 

1.02,1.03   108,109 

NH3 dissociated on graphene 

with epoxide group to form 

NH2 + OH (Fig. 3b) 

1.03   108 

NH2 isolated molecule   1.04   103  

 

 

Table 5.1:  NH bond angles and bond lengths of optimized NHx surface species on different sites in 
RGO.   

 

5.3.2.2 Case B: NH3/Epoxide Groups in RGO  

Next, consider Case B, where the interaction with the substrate plays a more significant role 

when NH3 adsorbs onto a region containing a single epoxide group.  DFT calculations show that 

for this case physisorption is again favored; in this case the calculated adsorption energy at 

bridge sites is -0.28 eV.  (As before, adsorption at the other sites neighboring the epoxide group 

is likely to take place in the actual samples due to the similar adsorption energies).  Nevertheless, 

relatively little effect on the molecular geometry and the substrate and adsorbate electronic states 
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is observed for this configuration (Table 5.1, Fig. 5.9).  Thus the vibrational frequencies of 942, 

1623, 3320, 3420, and 3453 cm-1 are also representative of this type of adsorption.  It is 

important to note that even when the initial adsorption site for the NH3 molecule is on a C-top 

site or the 6-fold hollow site, upon structural relaxations the molecule has a tendency to move 

toward the bridge site, which is the energetically favorable configuration.  The NH3 molecule is 

now about 2.7 Å above the RGO layer with two of the H atoms facing away from the graphene 

sheet and the third H atom facing toward the O of the epoxide group.  This configuration is a 

reaction intermediate preceding molecular dissociation.  It is energetically favorable for the H 

atom that points toward the epoxide group to ultimately bond to the oxygen, resulting in the 

breaking of the NH bond and opening of the epoxide ring.  This reaction resulting in dissociation 

of the NH3 molecule is favored over molecular adsorption by -0.37 eV.  The process results in 

the formation of chemisorbed OH and NH2 groups bonded at opposite C-top sites (Fig. 5.5E), 

consistent with previously reported calculations and with ex situ IR spectra collected for graphite 

oxide treated with ammonia.[35, 36]  The peaks that most closely correspond with this scenario 

are those at 1510 cm-1 in the bending region and 3208, 3270, and 3400 cm-1 in the stretching 

region.  The frequencies at 3208 and 3270 cm-1 are assigned to the symmetric and asymmetric 

stretches of adsorbed NH2, respectively, and the 1510 cm-1 band is assigned to the symmetric 

deformation.  These assignments were made based on the optimized adsorbate geometry (Table 

5.3.2.1) , which shows only  minimal perturbations  relative to the gas phase bond lengths and 

angles.  The frequencies of 1510, 3210, and 3270 cm-1 are very close to the NH2 frequencies in 

the gas-phase (1497, 3220, and 3301 cm-1)[32] and are also in agreement with the relationship 

between the symmetric and asymmetric stretching frequencies for amino complexes as 

formulated by  
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Figure 5.9:  Calculated total density of states for graphene with a single epoxide group (Fig. 
5.5B), graphene with a single epoxide group and a single NH3 molecule physisorbed (Fig. 5.7), and 
graphene with adsorbed OH and NH2 radicals (Fig. 5.5E).  Importantly, significant changes are observed 
in the O and N 2s states for the case of the dissociated molecule.  Such changes would produce 
measurable signals in a complementary in situ x-ray photoelectron spectroscopy (XPS) experiment, which 
would further support the work presented here.     

 

Bellamy and Williams, [37]  ߭௦ ൌ 0.876 ߭௔௦ ൅  345.5 cmିଵ.  Treating the 3270 cm-1 band as the 

asymmetric stretch in this equation yields a value for the symmetric stretch of 3210 cm-1, in close 

agreement with the experimental data.  The band at 3400 cm-1 is assigned to hydroxyl groups 

formed following the dissociation of NH3 and epoxide bond breaking (Fig. 5.5E). A decrease in 

the intensity of the COC stretching mode at 1200 cm-1 (Figs. 4.1B,  4.4) also provides evidence 

for the reduction in the number of epoxide bonds.  The bands in the 1300-1400 cm-1 region are 
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assigned to the rocking mode of the O-H bond perpendicular to the surface.  Note that in reality 

the samples are heterogeneous and may not result in exactly the structure shown in Fig. 4.5E; 

however, the experimental data definitively provide evidence for the reaction between NH3 and 

epoxide groups to form adsorbed NH2 and OH groups.    

5.3.2.3 Case C:  NH3/Carbon Vacancy 

Now we consider case C that comprises NH3 interacting with carbon defect sites, which 

we find extremely reactive toward NH3.  The chemical activity of these and similar defect sites 

are consistent with previous experimental and theoretical works.  Previous scanning tunneling 

microscopy (STM) studies [38] have reported an extremely high local density of states near the 

Fermi level localized to the dangling bonds, indicating high potential reactivity of these sites.  

DFT calculations showed that following the adsorption of NH3 at vacancy sites (adsorption 

energy of -1.71 eV), it is energetically favorable to dissociate into NH2+H.  These fragments 

bond to the σ bonds of opposing carbon atoms, resulting in adjacent C-NH2 and C-H functional 

groups (Fig. 4.5F, adsorption energy of -2.85 eV).  The optimized adsorbate geometry (Table 

5.1) indicates a shorter N-H bond length for this configuration than the gas phase value, and a 

larger H-N-H bond angle.  These observations suggest charge transfer out of the NH2 lone pair 

orbitals, and would blueshift the vibrational frequencies of both the stretching and bending 

modes with respect to the gas phase values (symmetric and asymmetric stretching respectively at 

3220 and 3301 cm-1 and bending at 1497 cm-1) due to the shorter bond lengths.  This is observed 

in the experimental spectra by the bands at 1540, 3100, 3285, and 3360 cm-1.  The bands at 3285 

and 3354 cm-1 are assigned to the symmetric and asymmetric NH2 stretches, respectively, and the 

band at 1540 cm-1 is due to the symmetric deformation.  The energy separation between the NH 

stretching bands (3354 and 3285 cm-1) is in good agreement with the equation previously noted 
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for the spacing between symmetric and asymmetric NH2 stretching vibrations, and is consistent 

with the expectations for the frequency shifts as compared with the gas phase value.  For 

example, when the effective population of the NH2 1b1 lone pair orbital is increased, the 

stretching frequencies are redshifted, as is the case for the amino anion,[32] and opposite to the 

behavior observed here.  The deformation at 1540 cm-1 is too low in frequency to be assigned to 

NH3.  The significant blue-shift of the stretching frequencies relative to the gas phase is 

indicative of strong electron donation to the substrate.  The band at 3100 cm-1 is due to the 

formation of C-H bonds following the dissociation of the molecule.  This frequency for a C-H 

stretch on graphene coordinated via the σ bonds is a reasonable value, and is similar to the C-H 

stretching frequencies for aromatic hydrocarbons and unsaturated CH functional groups.[39]  

These peaks could also be assigned to NH2 groups bonded at other types of defects containing 

dangling σ bonds, such as unreconstructed holes and edges, divacancies, etc.   

5.3.2.4 Case D:  Hydrogen Bonding with Other Functional Groups 

There remain several bands in the deformation (1070 and 1678 cm-1) and stretching 

(3190 and 3245 cm-1) regions that are unaccounted for by the theoretically considered models.  

While the interaction with residual oxygen has mostly been considered through adsorption at 

epoxide sites in RGO, experimental IR spectra (Fig. 5.1A) and other reports[40-42] indicate that 

there are other minority species present in RGO as well, particularly carbonyl groups, with 

significantly fewer hydroxyls and hydrogen-terminated carbon edges.  All three of these groups 

are likely to behave as active adsorption sites for NH3.  For carbonyl groups, adsorption is likely 

to occur through hydrogen bonding coordinated via the H atoms in NH3, forming an H2NH···O 

bonding configuration.  For CHx groups NH3 adsorption will occur via hydrogen bonding 

coordinated by the nitrogen atom and for OH groups could occur either by coordination of the N 
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in NH3 to the H in the hydroxyl group or coordination of one of the H atoms in NH3 to the O in 

the hydroxyl group.  Since previous theoretical studies have shown that hydroxyl groups can lead 

to NH3 dissociation followed by desorption of H2O molecules, [36] it is unlikely that intact NH3 

is adsorbed at the OH sites. Thus, as these bands suggest molecularly adsorbed NH3, they are 

most likely due to NH3 hydrogen-bonded to the carbonyl groups.  This assignment to hydrogen 

bonding at carbonyl groups, rather than at hydrogen-terminated edges, is due to the fact that 

oxygen is more electronegative than nitrogen, so hydrogen bonding of NH3 to carbonyl groups 

(coordinated by hydrogen in NH3) will be more energetically favorable than hydrogen bonding 

of NH3 to CH groups (coordinated by nitrogen).  This does not, however, rule out the possibility 

of NH3 hydrogen-bonded to the hydrogen-terminated edges.  The bands at 3245 and 3190 cm-1 

are assigned to the asymmetric and symmetric N-H stretches.  The shifted values of the NH 

stretching and deformation vibrations relative to the gas phase values are characteristic of 

hydrogen bonding, which in general redshifts the stretching vibrations and blueshifts the 

symmetric deformation vibration.[39, 43]  The band at 3230 cm-1 is assigned to the first overtone 

of the symmetric deformation vibration.    

 The assignments given for the four cases A-D are not meant to represent exactly the 

models shown in Fig. 5.5, but rather to provide a simplistic description of the physical situation 

that occurs  in the representative regions on the highly heterogeneous substrates.    

5.3.3 Bands in the Far-IR Region 

The assignments of NH2 groups in the representative configurations of Figs. 5.5E-F shed 

light on the bands in the far IR region at 821 and 700 cm-1.  These bands are assigned to C-NH2 

stretching vibrations of the NH2 groups coordinated by the σ and π bonds, respectively, based on 



www.manaraa.com

156 
 

the following observations:  First, these bands cannot be assigned to any internal mode of 

molecularly adsorbed NH3, as this frequency is much too low to be associated with the lowest 

frequency NH3 internal mode, the symmetric deformation vibration. Second, they also cannot be 

assigned to a C-NH3 stretch for the following reason: our calculations suggest that there is no 

adsorption site, apart from carbon vacancies, at which chemisorption between the carbon 

substrate and NH3 takes place.  Even at these vacancy sites, the presence of stable NH3 groups is 

unlikely, as dissociation is favored by 1.14 eV.  Lastly, the 821 and 700 cm-1 frequencies are too 

high in frequency to be the C-NH3 stretch of the physisorbed NH3 molecules.  To demonstrate 

this, consider Badger’s rule, which relates the bond stretching force constants of two molecules 

with their bond length based on the periodic table.  The system is treated as a carbon atom 

bonded to the NH3 molecule with a bond length of 2.94 Å.  Application of Badger’s rule then 

suggests 158 cm-1 for the C-NH3 stretching frequency.  As an additional demonstration of the 

approximate frequency of such a vibration, a calculation of the force constant was performed 

based on the calculated energy of the system as a function of the height of the adsorbate above 

the graphene plane, extracted from the DFT calculation steps from the model in Fig. 5.5D.  The 

molecule is initially started at 1.5 Å above the carbon plane, and rises to a height of 2.94 Å upon 

structural relaxations. The second derivative of the adsorption energy as a function of the height 

of NH3 above the graphene layer gives the adsorbate-substrate stretching force constant.  Based 

on the extracted force constant, the C-NH3 stretching frequency is 129 cm-1, in relative 

agreement with the frequency derived from Badger's rule.  This is not meant to be a rigorous 

attempt to calculate the actual frequency of such a mode, but simply to demonstrate the overall 

frequency region in which the C-NH3 stretching mode for the model in Fig. 4.5D is expected to 

be.  As the determined frequency range for the graphene-NH3 bond stretching mode is far below 
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the spectral range under consideration, the bands at 820 and 700 cm-1 are assigned to the 

adsorbate-substrate stretches of two different amino species present on RGO following exposure 

to NH3.  The substantial difference in vibrational frequency of the two C-NH2 stretch suggests a 

significant disparity in the bond strength of the adsorbate-substrate bond for the two amino 

species.  The amino groups bonded at the defects via the carbon σ bonds, which are notoriously 

strong, are likely to produce a stronger-adsorbate substrate bond than those coordinated by the π 

electrons.  Such a stronger bond will result in a higher C-NH2 stretching frequency for the NH2 

groups coordinated via σ bonds (Fig. 5.5F) than via π bonds (Fig. 5.5E).  The band at 820 cm-1 

corresponds to a higher vibrational frequency, indicating a stronger bond, and is assigned to the 

former leaving the band at 700 cm-1 assigned to the amino groups coordinated via the π bonds. A 

summary of all band assignments is given in Table 5.2. 
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Functional Group  Bands Observed  Assignment to Absorption 

Fundamentals 

Case A:  Physisorbed NH3 
and NH4

+ 
942 cm-1 

1623 cm-1 

3320 cm-1 

3420, 3453 cm-1 

3136 cm-1 

3160 cm-1 

1440 cm-1 

NH3 Symmetric Deformation  

NH3 Asymmetric Deformation 

NH3 Symmetric Stretch 

NH3 Split asymmetric stretch 

NH4
+ Degenerate Stretch 

NH4
+ Degenerate Stretch 

NH4
+ Deformation 

Case B:  Chemisorbed 
NH2+OH  

700 cm-1 

1345 cm-1 

1510 cm-1 

3208 cm-1 

3270 cm-1 

3400 cm-1  

C-NH2 Stretch 

OH Rocking 

NH2 Symmetric Deformation  

NH2 Symmetric Stretch 

NH2 Asymmetric Stretch 

OH Stretch 

Case C:  Chemisorbed 
NH2+H at defects 

820 cm-1 

1540 cm-1 

3100 cm-1 

3285 cm-1 

3360 cm-1 

C-NH2 Stretch 

NH2 Symmetric Deformation 

CH Stretch 

NH2 Symmetric Stretch 

NH2 Asymmetric Stretch 

Case D:  Hydrogen Bonded 
NH3  

1070 cm-1 

1678 cm-1 

3190 cm-1 

3245 cm-1 

NH3 Symmetric Deformation 

NH3 Asymmetric Deformation  

NH3 Symmetric Stretch 

NH3 Asymmetric Stretch 
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Table 5.1:  Summary of absorption bands observed in experimental IR spectra and their band 
assignments.   

5.3.4 Adsorbate-Substrate Electronic Interactions 

5.3.4.1 Löwdin Population Analysis 

 To explore the effect of these groups on the substrate, the effective charges on each atom 

in the unit cell following adsorption were calculated using Löwdin population analysis.[21] 

These charges, in conjunction with the calculated density of states (DOS), demonstrate how the 

adsorbates dope the substrate and affect the nearby atoms, and also how the vibrational 

frequencies of the adsorbate may be modified.  Fig. 5.10A-C shows the change in the effective 

valence charge on each atom in the unit cells shown in Figs. 5.5 and 5.7 relative to its value in an 

isolated NH3 molecule.  Here, blue/red represents a depletion/gain of valence charges relative to 

the calculated nominal value in the isolated molecule.  First, the calculated DOS for the NH3 

molecule on graphene and graphene with a single epoxide group (Fig. 5.6, Fig. 5.9) shows that 

the adsorbate has almost no observable effect on the position of the Fermi energy relative to the 

Dirac point, indicating that such a scenario would produce little effect on the conductivity of the 

substrate.  This negligible interaction is indicated in the diagram of Fig. 4.10A.  All of the carbon 

atoms neighboring the adsorption site, and the atoms in the NH3 molecule, have valence charges 

that are very close to their nominal values, with a change in the valence charge of the NH3 of < 

0.01  e as compared with the free molecule.  The final structure for NH3 dissociated by an 

epoxide group (Fig. 5.5E) results in much stronger charge transfer.  In the representation shown, 

the nitrogen atom is light blue, indicating some charge donation to the substrate.  The oxygen 

atom in the hydroxyl group and the carbon atom below it are red, indicating acceptor behavior.  

This acceptor behavior is also indicated by the calculated DOS (Fig. 5.9), which shows an 
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increase at Ef following dissociation of the molecule relative to the initial DOS of the unit cell 

containing only an epoxide group.  Similarly, for the NH2 and CH groups following NH3 

dissociation at defect sites, the nitrogen atom is deep blue, indicating significant charge donation 

to the substrate.  The carbon atom that hosts the dissociated hydrogen atom gains a substantial 

amount of charge.  Several other atoms in the supercell also acquire small fractions of electronic 

charge.  This charge depletion from the NH2 lone pair orbitals ultimately results in the decreased 

bond length, strengthening of the N-H bonds, and blueshift of the vibrational frequencies. 

 

Figure 5.10:  Adsorbate/substrate charge transfer in graphene supercells.  A)  Valence charge difference 
diagram for NH3 adsorbed on a bridge site in a supercell containing a single epoxide group.  Very little 
difference from the nominal values is observed due to the weak interaction between the physisorbed NH3 
group and the substrate.  B) Valence charge difference diagram for NH3 dissociated by an epoxide to form 
chemisorbed NH2 and OH radicals.  The nitrogen atom is blue, indicating charge is lost and donated to the 
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substrate.  The adsorbed hydroxyl group and the carbon atom below it are red, indicating acceptor 
behavior.  C)  Valence charge difference diagram for NH3 dissociated by a C vacancy to form 
chemisorbed NH2 and H.  The color bar shows the difference in valence charge in units of e.   

 

 This donation effect can also explain the observation of the overall negative broadband 

differential absorption observed in Fig. 5.1.  The breaking of the epoxide bonds and strong 

electron donation of the various NHx fragments has the effect of both raising the chemical 

potential above the Dirac point as well as suppressing the strong optical excitations associated 

with the epoxide-doping of the RGO.  The net effect is a negative differential absorption.   

5.3.4.2 Unusual Strength and Shape of the NH Stretching Band 

 The anomalously large absorption strength of the N-H stretching band, as compared with 

the NH symmetric and asymmetric bending vibrations, is now addressed.  Whereas in the gas-

phase for both NH3 and NH2 the symmetric deformation mode is the most intense vibration, here 

the N-H bending region produces the strongest absorption.  This absorption band also has an 

overall asymmetric shape, with a suppressed negative spectral weight relative to the background 

absorption on the low wavenumber side and a long absorption tail on the high wavenumber side.  

The suppression of the background absorbance on the low wavenumber side suggests that this 

feature cannot be assigned simply to inhomogeneous broadening.  These asymmetric lineshapes, 

as previously observed for the case of CO on Cu(100)[44] and H on W(100),[45] are indicative 

of resonant coupling of the adsorbate vibration to the continuum of low energy substrate 

excitations.  The effect has previously been attributed to adsorbate vibrational coupling to 

substrate electron-hole pair excitations.[46, 47]  In this picture, the adsorbed molecule provides 

unoccupied electronic levels into which the substrate electrons can tunnel and occupied 
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electronic levels from which electrons can tunnel into the vacant electronic bands of the 

substrate.  As the molecule vibrates, the position of this level oscillates relative to the Fermi 

energy, resulting in charge oscillations between the substrate and adsorbates.  This process 

happens out of phase with the adsorbate vibration, resulting in a resonance and antiresonance 

absorption profile.  For the case of RGO observed here, the energy of the NH stretches is too 

high to efficiently couple to the phonon continuum, and is also too high in energy to couple to 

intraband electron-hole pair excitations.  Thus, the most likely excitations that can couple to the 

adsorbate vibrations in this energy range are the electron-hole pair excitations due to transitions 

between the valence and conduction bands.  While the numerous overlapping bands in this 

region made it difficult to attribute exactly which surface species participates in this process, 

simple arguments suggest that only the NH2 groups formed from the dissociation of NH3 can 

contribute.  The calculations and experimental spectra shown here indicate that NH3 and NH4
+ 

are predominantly physisorbed to RGO,  by either van der Waals forces or hydrogen bonding.  

The physisorbed molecules not participating in hydrogen bonding are sufficiently far from the 

substrate that the tunneling process described above is unlikely.  The carbonyl groups that 

contribute to hydrogen bonded NH3 have more localized electronic states, whereas mobile 

electrons are needed to participate in the damping of the adsorbate vibrations.  The remaining 

majority species are the NH2 groups, which we described as being chemically bonded either on 

top of the carbon planes (Fig. 5.5B) or at defects (Fig. 5.5C).  Both of these groups produce 

asymmetric and symmetric stretching vibrations in the spectral region under consideration.  

Ssymmetry arguments can be used to identify which absorption bands are most likely 

contributing to the asymmetric lineshape.  Smith and Kevan[48] suggested, following analysis 

from Langreth,[46] that where there is electronic coupling to adsorbate vibrations, the 
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symmetries of the vibration and electronics states must be similar with respect to the surface 

mirror planes.  Thus, the delocalized π electronic states (that are even with respect to the surface 

mirror planes) can only couple to the symmetric stretches of both types of adsorbed NH2 groups 

since the asymmetric stretches are odd with respect to the mirror planes.  It is impossible from 

the analysis presented here, though, to conclusively state which species of NH2, if not both, 

contribute to the electronic coupling.  This model, however, does explain the uncharacteristically 

large absorption strength in the NH stretching region, which has its origin in the electronic 

component of the dynamical dipole moment of the coupled electron-vibration excitation. 

5.3.5 Spatially Dependent Adsorption Distribution 

 IR imaging using an IR focal plane array (FPA) detector was performed to study the 

morphology of the NH3/RGO system.  Fig. 5.11A shows an IR image obtained from the raw 

absorbance at 3300 cm-1, of a multilayer RGO sample following exposure to NH3.  The 

absorption at this wavelength is dominated by the background electronic absorption of direct 

transitions between the RGO valence and conduction bands.  This image may be used to 

visualize the shape and thickness of the sample, where the strength of the background absorption 

scales linearly with thickness.  The image in Fig. 5.11A shows substantial variations in  film 

thickness, providing a means to study the adsorption capacity of RGO as a function of film 

thickness.  Fig. 5.11B shows a chemical image of the sample in Fig. 5.11A integrated over 3000-

3410 cm-1, with a baseline used at the integration limits.  The use of the baseline eliminates the 

background absorption and shows only the absorption due to the adsorbates’ stretching modes.  

The resulting image is quite noisy at the single pixel level (0.54 × 0.54 m2 projected sample 

area) due to the extremely weak vibrational absorption of the adsorbates as compared with the 

much stronger electronic absorption that additionally produces a severe modulation of the 
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baseline in the spectral region of interest.  Despite the large level of noise, it is clear that the 

absorption is strongest in the central (thicker) region of the sample, and decreases with 

decreasing thickness at the periphery of the sample.  To further illustrate this point, average 

spectra generated from the central and peripheral regions of the sample are shown in Fig. 5.11C.  

The red curve is generated by averaging all of the spectra within the solid white oval at the center 

of the flake shown in Fig. 5.11A, and the black curve is generated by averaging all of the spectra 

in the peripheral region shown by the dashed white oval in Fig. 5.11A.  The spectra have been 

baseline corrected and smoothed for clarity.  The bands due to the adsorbates appear somewhat 

different here than in the differential spectra of Fig. 5.1 due to a combination of the subtraction 

of the strongly varying electronic background and lower SNR of the FPA detector, but the 

previously assigned bands are still apparent.  Upon examination,  the absorption strength of the 

adsorbate stretching vibrations from the thick region is seen to be greater than that from the thin 

region.  This has a very simple explanation: in the thicker regions, the space between the layers 

is sufficiently large to allow intercalation of the NH3 molecules.  If the adsorption were taking 

place only on the surface of the flakes, a uniform absorption over the distribution of the sample 

would be expected.  The higher quantity of adsorbates observed in the thicker region of the 

sample provides further confirmation that a Langmuir-type adsorption is dominant over a 

multilayer adsorption process.  If the majority response were due to the continuous growth of a 

multilayer at the surface, a uniform distribution of the adsorbates over the thick and thin regions 

of the sample would be observed.  A multilayer adsorption process between the RGO multilayers 

is also not possible due to the limited space between adjacent layers.  The chemical image in Fig. 

4B thus indicates that the adsorption onto multilayer RGO can be considered as a Langmuir 

process on each independent layer.  The fact that thicker flakes can host more NH3 
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molecules/molecular fragments has a significant implication for sensor design:  Since 

larger/thicker flakes will have an overall smaller resistance and if each layer can contribute as an 

independent single layer RGO sensor, the overall SNR will be better for thicker RGO films than 

for monolayer films. 

 

Fig. 5.11:  IR spectral imaging of NH3/RGO.  A)  Raw absorbance at 3300 cm-1 of NH3-covered RGO 
showing the distribution and profile of the RGO sample.  The relative strength of the absorption is an 
indication of the local sample thickness.  The reference for this measurement is the clean diamond 
window.  B)  Integrated absorbance from the image in A) over the spectral regions 3000-3410 cm-1 (with 
same baseline).  The reference for this measurement is again the clean diamond window.  The data 
indicate the strongest NH functional group absorption is present at the central (thicker) region of the 
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sample, and the NH functional group absorption strength becomes weaker with decreasing thickness at 
the periphery of the sample.  C) Comparison of spectra averaged from the central (thick) region and a 
peripheral (thin) region.  The spectra have been baseline corrected to remove the electronic background 
and a 7-point smoothing was applied for clarity.  The spectra demonstrate stronger absorption of the NH 
bands in the central thick region than in the thinner peripheral regions.   

5.4 Conclusions 

Structural and chemical defects introduced to the graphene lattice, such as those in RGO, act as 

highly reactive centers for NH3.  Four intuitive physical models are presented to account for the 

predominant contributions observed in the vibrational absorption spectrum.  The calculations and 

experiments given here show that both epoxide groups and carbon vacancies can contribute to 

dissociation of the NH3 molecule, and such heterogeneity  can result in a wide variety of 

adsorbed species.  Calculations and the change in the background IR absorption suggest that all 

of these different surface species produce a small net electron donor effect.   These data can 

facilitate understanding of how NH3 molecules interact with the RGO, which will be critical in 

furthering the development of RGO applications. 
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Chapter 6:  Bonding and Interactions at the NO2/Reduced 

Graphene Oxide Interface 

 

The adsorption of NO2 onto reduced graphene oxide (RGO) was investigated using in situ IR 

Microspectroscopy and DFT calculations.  As for the case of NH3 adsorption, the numerous 

possible adsorption sites lead to several distinct species of NOx on the surface.  Physisorption 

occurs at graphitic regions while molecular chemisorption takes place at defects containing 

dangling bonds.  Adsorption at the epoxide O-top sites leads to the formation of physisorbed 

NO3 anions, and adsorption near carbonyl groups results in formation of NO3 complexes that are 

chemisorbed to the carbon.  A significant perturbation to the electronic structure is manifested as 

a broadband modulation of the background IR absorption.   This is attributed to the reaction of 

NO2 with the epoxide groups to form physisorbed NO3, causing an increase in the density of 

states near the Fermi energy and a lowering of the effective mass of these states.   
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6.1 Introduction 

Nitrogen dioxide is among the most common toxic environmental pollutants, forming during 

combustion reactions in power plants and automobile exhaust.  As such, tremendous effort has 

gone into developing substrate materials that are capable of both detecting the presence of NO2 

in small quantities and changing its oxidation state into a more benign form.  Devices based on 

graphene are proving to be a competitive alternative for the room temperature NO2-based gas 

sensors.  This is due to the high mobility of carriers and the ease with which the carrier density in 

graphene sheets may be modulated to produce a measureable signal.  For example, adsorption of 

NO2 onto epitaxial graphene on SiC in ultra-high vacuum (UHV) has been shown to induce a 

metal-insulator transition by tuning the charge carriers from electrons to holes and exposing the 

small band gap induced by the substrate. [1]  Despite this relatively large modulation of the 

transport properties under UHV conditions, operation under ambient atmospheric conditions 

requires competition for adsorption sites between the small concentration of the target molecules 

of interest with the much larger amount of atmospheric molecules including water, oxygen, and 

CO2.  It is thus desirable to use substrates which possess a strong, selective interaction with NO2.  

In addition, the use of graphene derived from epitaxial growth on SiC or from mechanical 

exfoliation of graphite is extremely cost-prohibitive.  Graphene oxide (GO) [2, 3] and reduced 

graphene oxide (RGO), [4] on the other hand, are inexpensive and contain numerous oxygen 

functional groups and structural defects to the carbon lattice. [5, 6]  These chemically active 

defects have the potential to enhance the interaction between the substrate and targeted 

adsorbates and correspondingly enhance the modulation of transport properties following 

adsorption.  RGO also has the advantage over GO of high conductivity. [7]  Due to these 

attractive properties, RGO has been demonstrated to perform at a high level in a variety of 
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sensing applications.[8-18]  However, as discussed in detail in Chapter 4, RGO is highly 

nonuniform, with varying stoichiometry, and spatially heterogenous chemical and atomic 

structure. [6]  It has thus been difficult to understand the adsorbate bonding configuration and 

substrate-adsorbate interactions that give rise to the modulation of the transport properties.  In 

this work, in situ synchrotron infrared microspectroscopy studies of NO2 adsorption on RGO are 

presented in conjunction with density functional theory (DFT) calculations to model the 

adsorption.  Based on correlations between experimental measurements and theoretical 

modeling, the majority surface species present following exposure of RGO to NO2 are identified, 

and their collective effects on the local electronic structure are discussed.   

6.2 Experimental 

RGO suspensions in N,N-dimethylformamide (DMF) were prepared as described previously[4].  

Samples for IR microspectroscopy were prepared for transmission experiments by depositing a 

small quantity of the RGO dispersion onto IR transparent diamond windows. For the in situ 

measurements, the substrates were placed in a custom flow cell [19] that employs 0.5 mm thick, 

3 mm diameter, IR transparent diamond windows for transmission measurements.  IR 

microspectroscopy was performed at the synchrotron radiation center, using the multi-beam 

IRENI [20, 21]  beamline in the spectral range 8,000-650 cm-1.  Transmission measurements 

were performed in situ by collecting background single beam spectra on the sample using a 74× 

objective of NA=0.65. Measurements were taken on the RGO sample in the flow cell before and 

during exposure to NO2.  The flow cell was pumped on by an external exhaust system, producing 

a weak vacuum environment.  100 ppm NO2 diluted in Ar was subsequently pumped through the 

flow cell at a flow rate of 63 mL/min. Ar was chosen as an inert balance gas of the diluted 

mixture to mimic UHV conditions and highlight only the surface chemistry of the target gases 



www.manaraa.com

174 
 

and not that of ambient atmospheric components.  Single beam spectra were recorded at the 

exact same position as the reference spectra to produce differential absorption spectra during 

exposure to the gases, highlighting only changes due to the adsorption.  Individual spectra were 

collected for approximately 3 minutes at 8 cm-1 spectral resolution.   

 Plane-wave density functional theory (DFT) calculations and geometry optimization were 

performed with the QUANTUM ESPRESSO package[22] using the Perdew-Zunger local density 

approximation (LDA) [23] for the exchange-correlation potential. Ultrasoft pseudopotentials 

with a plane-wave cutoff of 30 Ry (~408 eV) for the wavefunction and 300 Ry (~4082 eV) for 

the charge density were used to represent the interaction between ionic cores and valence 

electrons. A convergence threshold of 10-8 eV was set for the energy self-consistency and the 

forces were relaxed to 0.005 eV/Å.  Integration over the Brillouin zone was performed on a 

regular 12×12×1 Monkhorst-Pack k-point grid.  The computational unit cell consists of a 3×3 

graphene supercell with a single NO2 molecule adsorbed at different sites.  The unit cell for 

defective graphene has one vacancy and that for RGO has one epoxide group in a 3×3 supercell. 

A vacuum region of 12 Å was considered to separate the layer and its image in the direction 

perpendicular to the graphene plane.  The adsorption energy, Ea, is defined as the difference 

between the energy of the system with a bound NO2 molecule and the sum of the energy of the 

isolated molecule and the graphene layer.  The charge transfer from NO2 to graphene, defective 

graphene and RGO was calculated on the basis of Löwdin population analysis.[24] 
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6.3 Results and Discussion 

6.3.1 Differential IR Absorption of NO2/RGO 

 The structure and composition of RGO was discussed at length in Chapter 4; in brief, 

RGO can vary in composition based on the preparation method, [25] but is well known to differ 

dramatically from the structure of pristine graphene.[6, 26]  Furthermore, irrespective of its 

synthesis, RGO always contains some degree of residual oxidation. [25]  For the case of 

hydrazine-reduced GO presented here,[4] the nature of the residual oxygen groups was 

illuminated by IR absorption measurements shown in Chapter 4.  The absorption spectrum of the 

RGO substrate used for the experiments in which NO2 was adsorbed is shown here in Fig. 4.16-

4.17.  Based on the analysis in Chapter 4, it was found that the onset of the absorption edge 

occurred at ≈0.22 eV (1800 cm-1).  The spectrum was taken in situ immediately before exposing 

the sample any NO2 molecules.   

 Fig. 6.1A shows a differential absorption spectrum of RGO following a 29 min exposure 

to 100 ppm NO2 diluted in Ar at a flow rate of 63 mL/min, at which point the absorption bands 

are saturated.  The differential absorbance here is the logarithm of the ratio of the transmittance 

of the RGO exposed to NO2 to the transmittance of the RGO prior to exposure.  For clarity, the 

bands due to atmospheric absorption and gas-phase NO2 have been subtracted.  Several 

absorption bands are observed below 2000 cm-1 in conjunction with a significant modulation in 

the broadband IR absorption; spectral weight is transferred from higher to lower energies 

resulting in  negative absorbance at frequencies above 4500 cm-1 and positive absorbance below 

4500 cm-1.  This shift in the spectral weight is discussed in detail below, and the vibrational 

absorption bands in the mid-IR fingerprint region are considered first.  For ease of interpretation, 

the emphasis is on the most diagnostic spectral region, 1000-1700 cm-1, the region in which the 
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N-O bond stretching vibrations occur.  Fig. 6.1B shows an enlargement of the spectrum in Fig. 

6.1A in the N-O stretching region.  The absorption profile in this region consists of several 

overlapping bands sitting on a very broad background.  To identify more clearly how many 

bands are present, the region from 800-17070 cm-1 was baseline corrected and fitted with several 

Gaussian absorption bands (Fig. 6.2).  In this system there is substantial inhomogeneous 

broadening and fairly low SNR; however, the curve fitting approach provides the most effective 

assessment of the predominant absorption bands present.  The peak positions of the most 

significant bands  are located at 1700, 1560, 1495, 1425, 1367, 1235, 1150, 1060, and 975 cm-1.  

In making the band assignments, it is instructive to consider existing literature on NO2 

adsorption on pure graphite and soot.  Muckenhuber and Grothe [27] performed diffuse 

reflectance infrared fourier transform spectroscopy (DRIFTS) to study NO2 adsorption on 

graphite and various types of soots and carbon black in high-vacuum conditions.  Several of the 

bands observed in their work are consistent with bands observed in Figs. 6.1-6.2, and their 

assignments were supported by isotopic substitution.  In particular, a strong absorption band was 

observed at 1230 cm-1 on soot and graphite samples, assigned to a C-O vibration of chemisorbed 

C-O-N=O species.  Interestingly, this band was only observed on graphite when the samples 

reacted at 400°C, suggesting a large activation barrier for adsorption in this configuration.  The 

corresponding N=O stretch for this species was observed at 1485 cm-1.  A bands at 1560 cm-1 

was also observed and assigned to R-NO2 groups where R could represent either extended 

aromatic structure or disordered carbon network.   

 Based on the known assignments for the NO2/soot and NO2/graphite systems, the role of 

oxygen in RGO and the remaining bands not observed in these systems can be more clearly 

distinguished.  The assignments of the bands observed in the data in Fig. 6.1 are given in table 
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6.1.  Before discussing the assignments of the bands observed in the data shown here, the atomic 

structure of RGO is first considered in conjunction with first principles modeling.  The approach 

toward modeling the substrate is identical to that considered in Chapter 5; RGO is decomposed 

into graphitic regions, oxidized (epoxide) regions, and defective regions (carbon vacancy).     

 

 

Fig. 6.1:  Differential absorption of the NO2/RGO system over the entire mid-IR (A) and the fingerprint 
region (B).  The spectrum is generated using the clean RGO as the reference spectrum for the adsorbate-
covered RGO.  The absorption bands contributing to the spectrum are indicated by the dashed lines. 
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Fig. 6.2:  Gaussian curve fits to baseline corrected data from Fig. 6.2. 

 

 

 

Table 6.1:  Assignments of observed bands in the fingerprint region to NxOy species formed following 
exposure of RGO to NO2. 
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6.3.2 Correlating IR Measurements with Theoretical Modeling 

 First, the case of NO2 adsorption on regions that are predominantly graphene-like is 

considered.  DFT calculations, in agreement with previous reports, [28, 29] suggest molecular 

physisorption of NO2 at these regions.  The optimized structure (adsorption energy = 0.3 eV) 

shows that the most energetically favorable configuration consists of the molecule adsorbed at 

the carbon bridge site, with the oxygen atoms pointing toward the graphene sheet (Fig 6.4A).  

The nitrogen atom is 3.35 Å above the carbon plane indicating physical adsorption between the 

graphene sheet and NO2.  Other adsorbate geometries, such as NO2 physisorbed in a C2v  

configuration at the C-top and 6-fold hollow sites, had very similar adsorption energies to the  

 

Fig. 6.3:  Representative structural models used for modeling the interaction of NO2 with various 
structures in RGO.  A) Adsorption at graphitic regions can be described by physisorption of NO2 over the 
bridge sites. B) Starting from the O-top site, NO2 can react with an epoxide group to form physisorbed 
NO3.  C)  Adsorption at a single carbon vacancy results in a C2v bonding configuration in which each 
atom in the NO2 bonds to a carbon atom at the defect. 
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structure in 6.3A and are also likely to represent subpopulations of adsorbates that are 

indistinguishable from one another in the IR experiments.  The calculated total density of states 

(TDOS) for the structure in Fig. 6.3A before and after adsorption of NO2 is shown in Fig. 6.4.  

The electronic states of the substrate are overall very similar with and without the presence of 

NO2, but the position of the Fermi level following adsorption of NO2 is redshifted as compared 

to the clean substrate .  This indicates hole doping of the substrate and small fractional charge 

transferred to the NO2.  Thus a minor redshift of the molecular vibrational frequencies is 

expected as compared to the gas phase values (asymmetric and symmetric stretching at 1618 and 

1318 cm-1, respectively [30]).  This situation  
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Fig. 6.4:  Calculated TDOS for the 3×3 graphene substrate with (dashed red) and without (solid green) 
the physisorbed NO2 as in Fig. 6.4A.   
 

 

most closely corresponds to the band that is observed at 1560 cm-1, which is assigned to the NO2 

asymmetric stretching mode  (the exact frequency of this band was difficult to assess due to the 

imperfect subtraction of the gas-phase NO2 spectrum).  The far weaker symmetric stretching 

mode is seen as the weak shoulder at 1300 cm-1 sitting on the much larger band at 1235 cm-1.    

 Previously published reports [1] have indicated that adsorption of NO2 on pristine 

graphite or graphene surfaces results in dimerization of the molecule to form physisorbed N2O4; 

this scenario also is supported by our experimental data.  The bands at 1700 and 1375 cm-1 
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provide a unique fingerprint of the N2O4 and are typical of the frequencies for this molecule 

observed on numerous other surfaces.[31]  Thus graphitic regions of the surface can host NO2 in 

both its molecular and dimerized forms.   

 Next, adsorption at an epoxide site is considered.  When the molecule initially starts close 

to the O-top site with the N atom pointing toward the oxygen, the energetically favorable 

pathway involves a breaking of the epoxide C-O-C bonds in favor of the formation of an 

adsorbed NO3 complex with a significant excess negative charge. Following the epoxide bond 

breaking, the NO3 molecule rises away from the carbon plane with the final distance between the 

graphene sheet and the lowest oxygen atom equal to 2.4 Å (Fig. 6.3B).  The overall adsorption 

energy of this process is 1.65 eV.  The reaction of the NO2 molecule with the epoxide group 

results in a significant negative charge transferred to the NO3 complex, effectively hole-doping 

the substrate.  This is illustrated in Fig. 6.5, where the calculated DOS is shown for the substrate 

in Fig. 6.3B before and after the reaction with NO2.  The data show that following reaction (blue 

and black curves for spin up and down, respectively), the substrate electronic states are 

essentially graphene-like (see, e.g., Fig. 4.20), but the Fermi level is redshifted over 1 eV from 

the Dirac point, indicating the process hole-dopes the substrate.  In this relatively high 

concentration (C18NO3) the doping is somewhat exaggerated; however, lower concentrations will 

have the same effect with a smaller overall shift to the electronic states.   The DOS in Fig. 6.5 for 

this structure also shows a strong resonance centered exactly at Ef, indicating a partially occupied 

state.  Several calculations were performed with different concentrations of the NO3 complex 

(for example, a 4×4 supercell was used as the starting structure) and the results indicate that the 

energy of the resonance was dependent on the concentration. This suggests that it is unlikely that 

the NO3 complex has a half-filled state in the actual experimental conditions. 
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 The free NO3
- ion has a D3h symmetry, and accordingly has only one doubly degenerate 

infrared active mode corresponding to the asymmetric stretching of the N-O bonds, in which an 

N-O bond stretch occurs for 2 O atoms and an N-O bond compression occurs for the third.  In the 

gas phase this mode is observed at 1356 cm-1 [30].  This ion also has one Raman active mode at 

1045 cm-1 corresponding to the symmetric stretching of the N-O bonds which is silent in the IR.  

The adsorbed NO3 complex has a lower C2v symmetry due to the presence of the surface; 

consequently, the symmetric stretching mode at 1050 cm-1 becomes IR active and the degenerate 

asymmetric stretch is split into two modes.  The degree of the splitting is generally related to the 

strength of the interaction with the surface.  These modes are assigned to the bands at 1425, 1150 

and 1060 cm-1, which are in the typical range of those reported for nitrates chemically adsorbed 

in the C2v configuration [31].  In addition, these bands were not observed for NO2 adsorption on 

soot and graphite [27], where oxygen functional groups play a less prominent role.  The band at 

1060 cm-1 is displaced only 15 cm-1 from its gas-phase frequency, while the bands at 1150 and 

1425 cm-1 are displaced from the gas-phase value of the degenerate stretch, respectively, by 206 

and 70 cm-1, indicating a substantial interaction with the surface.  This is somewhat surprising 

considering that the optimized adsorbate structure has a weak physical bond to the surface.  The 

following mechanism is proposed to account for this interaction: following the reaction of NO2 

with the epoxide group, the NO3
- ion inherits an excess negative charge, and hole-dopes the 

substrate.  This difference in the charge distribution creates an electric field normal to the surface 

that acts upon the NO3
- ion.   The adsorbed NO3

- feels the effect of the electric field, causing the 

degenerate mode to split.  This is in essence the principle of the vibrational Stark effect [32].   

 Next the adsorption of NO2 at defective regions of the RGO substrate is qualitatively 

considered.  Many types of defective regions in RGO and graphene are possible; [33] here we 
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focus on unreconstructed defects such as single carbon vacancies, double vacancies, etch holes, 

and edges.  In general, the main feature under consideration is the presence of one or more 

carbon dangling bonds.  These types of defects are the most likely to result in chemisorption of 

the NO2 and to produce distinctive vibrational signatures from the physisorbed species already 

discussed.  

 

Fig. 6.5:  Calculated TDOS for the bare substrates in Fig. 6.4A (dashed blue) and Fig. 6.4B (solid green), 
and for the final structure in Fig. 6.4B after reaction with NO2 (solid orange).  Note that the strong 
resonance at 0 eV due to the NO3 that appears half-filled was found to vary in energy as a function of NO3 
concentration. 
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A reductionist approach toward understanding the highly complicated interaction of the 

adsorbate with defective sites is taken.  As the simplest case of the interaction with such defects, 

adsorption of NO2 onto a single carbon vacancy is used as a template to understand the 

interaction of the molecule with carbon dangling bonds.  The model consists of NO2 adsorption 

at 3×3 graphene unit cells containing a single carbon vacancy (Fig. 6.3C), at which the NO2 is 

initially placed.  Following relaxation of the models of the substrate structure, the NO2 molecule 

is placed immediately above the vacancy in a C2v configuration.  Upon relaxation, the lowest 

energy structure has all three of the atoms in NO2  bonded at the vacancy as in Fig. 6.3C.  This 

structure is categorized as the nitro-nitrito configuration in which the molecule is coordinated to 

the substrate atoms by both the N atom and one or more O atoms.  While this ideal case of a 

single atomic vacancy is likely not representative of the majority defects of RGO, which contains 

large holes and edges, the model demonstrates that it is highly favorable for the oxygen and 

nitrogen atoms in NO2 to passivate the dangling bonds.  In this case in which three dangling 

bonds are initially exposed, the adsorption energy for the structure in Fig. 6.3C is 3.79 eV.  The 

ideal case of a single carbon vacancy in an otherwise pristine graphene sheet preserves the C2v 

symmetry of the molecule; however, in more general defects such as vacancy clusters, holes and 

edges of stacked RGO sheets, there will not be three symmetric dangling bonds to host the NO2 

molecule.  In such cases, the NO2 molecule can be coordinated by both a nitrogen and oxygen 

atom (nitro-nitrito configuration) or by a single oxygen atom (nitrito configuration). These 

configurations both involve a lowering of the molecular symmetry of the NO2 molecule and 

likely represent the predominant interaction of the target molecules with defective regions of the 

film.  The effect of this symmetry lowering will be to convert the collective symmetric and 
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asymmetric stretches of the N-O and N=O bonds into single N-O and N=O bond stretching 

modes.  Considering this distinction along with the substantial negative charge transferred to the 

molecule from the substrate, the features most closely resembling this situation are the bands 

observed at 1495 and 1235 cm-1, which are assigned to the N=O and C-O stretches of the NO2
- 

ion bonded in a configuration C-O-N=O.  These assignments are further supported by the fact 

that these same bands are observed during the reaction of NO2 with soot and graphite at elevated 

temperatures [27].  In addition to defects containing sp2 dangling bonds, C-O-N=O bonding 

configurations could result from regions where the substrate has a local sp3 structure [34], such 

as in the vicinity of epoxide groups [35] and extended topological defects [6].   

 The interaction between NO2 and the other minority functional groups in the samples 

consisting of carbonyl groups and even fewer hydroxyl groups is now considered.  Tang and 

Cao[36] showed that NO2 chemisorption at the carbonyl groups is slightly favorable (adsorption 

energy = -0.37 eV) resulting in an NO3 complex coordinated to a single carbon atom.  This 

conclusion is not supported by the experimental data shown here.  The structure they proposed 

has an O···NO2 bond length of 4.62 Å, which is larger than the bond lengths in gas-phase NO2, 

giving the complex a C2v symmetry.  The chemical bond between the carbonyl group and the 

NO2 adsorbate would certainly cause a large perturbation to the vibrational frequency of the C=O 

stretching mode.  In the data shown in Fig. 4.16, this mode is seen as a sharp, intense feature at 

1735 cm-1, whereas in the differential spectra in Fig. 6.1, there are no vibrational features evident 

in this frequency region.  If the carbonyl groups were so perturbed as suggested by Tang and 

Cao, either a negative or derivative band at the initial C=O stretching frequency would be 

observed, yet there is nothing in the data to support this conclusion.  The difference between our 

samples and their structural models could contribute to the discrepancy between their predictions 
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and the experiments shown here.  Their models of the interaction of NO2 with substrates 

containing the carbonyl group contained a 4×4 graphene lattice with both a carbonyl and a 

hydroxyl group, the latter being at best a minority in the samples here.  Furthermore, in this 

model, of all of the other adsorption sites in the supercell besides from the carbonyl group had a 

greater binding energy.  The calculated adsorption energy of our structure of physisorbed NO2 

was 0.3 eV, which is comparable to their calculated binding energy for adsorption to the 

carbonyl group.  Thus, in the experiments it is more likely that other more favorable adsorption 

configurations compete with that proposed by model.         

 There is also a very weak band in the X-H stretching region of the spectrum, at 

approximately 3250 cm-1.  A band in this position is unexpected since it is observed in IR spectra 

of RGO that hydroxyl groups are an extreme minority.  The presence and strength of this band 

was observed to be variable in different experiments, and a number of hypotheses were 

considered regarding the physical origin of this band.  The first possibility involves NO2 

adsorption at an adsorbed hydroxyl group.  DFT calculations were performed and indicate that 

the interaction of the hydroxyl groups with NO2 is based on van der Waals bonding and does not 

form any new N-H or O-H bonds.  Another possibility that was considered is that the band is a 

consequence of NO2 reaction with water molecules to produce HNO2 and HNO3.  This reaction 

could take place in the gas phase under the atmospheric conditions reported here, or with 

minority amounts of adsorbed water on the surface of the sample.  These complexes, however, 

are not likely to account for any of the majority bands observed in the region 1000-1700 cm-1 for 

the following reason:  in both the trans and cis conformations of HNO2, the strongest band in the 

spectrum occurs for 790 and 850 cm-1, respectively.  The experimental spectra show some very 

weak intensity in this region, but the absorbance here is far lower than in the 1000-1700 cm-1 
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region, and the bending modes of NOx are expected in this region as well and could account for 

this intensity.  If the strongest bands for HNO2 were responsible for this low-frequency (<1000 

cm-1) intensity, the absorption in the 1000-1700 cm-1 would correspondingly be negligible as 

compared with dominant the features in this region of the spectrum that are assigned to the N-O 

stretches.  From this it is concluded that none of the stronger bands observed in the 1000-1700 

cm-1 region of our experimental spectra can be assigned to the modes of HNO2.  Similarly, both 

the cis and trans conformations of HNO3 have strong bands at 789 and 772 cm-1, respectively.  

There are no pronounced absorption features in our data that could be assigned to these modes.  

In addition, the N-H stretching vibrational frequencies observed are much lower than would be 

expected for HNO2 and HNO3.[30]   

 As an additional demonstration that the bands in the 1000-1700 cm-1 region are not 

associated with a nitrogen hydroxide, an illuminating comparison between two identical 

experiments is shown in Fig. 6.6.  The only difference between the two experiments were the 

samples, which were indistinguishable on the basis of their IR absorption.  In the first experiment 

(spectrum from Fig. 6.1, red curve in 6.6), the feature at 3250 cm-1 can barely be observed, while 

in the second experiment (blue curve in 6.6) the feature is much more intense than any other 

bands in the spectrum.  The band intensities in the fingerprint region are nearly identical in the 

two experiments.  To further highlight the changes in the two experiments, the difference 

between the two spectra in Fig. 6.6 was calculated and is shown in Fig. 6.7.  In the OH stretching 

region, two peaks can be discerned at ≈3250 and 3500 cm-1, while in the OH bending region, a 

clear peak is observed at 1641 cm-1.  These bands provide a characteristic fingerprint of adsorbed 

water molecules.  The OH stretching modes are redshifted from their gas-phase values (3756 and 

3656 cm-1) while the OH bending mode is blueshifted (gas phase value of 1594 cm-1).  These 
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shifts are characteristic of hydrogen bonding.  In addition, an asymmetric feature is observed at 

1269 cm-1 that arises due to a slight frequency mismatch of the 1235 cm-1 band between the two 

experiments.  The data suggest the following interpretation for the presence of the adsorbed 

water: since the experiments are not performed in UHV, atmospheric water is omnipresent due to 

minute leaks in the flow cell and tubing.  When the flow cell is not being purged with a high 

volume of dry nitrogen gas, the water molecules can easily infiltrate the flow cell.  When the 

NO2 chemisorbs to the surface, it provides active sites to which the water molecules can be 

coordinated by hydrogen bonding to the oxygen atoms in NO2.  This results in a shift of the 

distinctive mode at 1235 cm-1 and shifts of the OH bending and stretching modes relative to their 

gas-phase values.  The quantity and presence of the water on the surface are dependent on the 

relative humidity at the time that the experiment is performed.  For example, the experiment that 

yielded the red spectrum in Fig. 6.6 was performed in August of 2012, a period in which an 

historic draught took place in Wisconsin (particularly Madison).  The experiment that yielded the 

blue spectrum was performed in October 2012, when the relative humidity was higher.  

Importantly, the data show that environmental effects are relevant in actual sensing applications, 

as the bonding of water to the adsorbed NO2 will distort the electron distribution and impact the 

acceptor behavior of NO2.   
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Fig. 6.6:  Comparison of NO2/RGO differential absorption spectra shown for two different experiments 
spaced months apart.  In the red spectrum, the band at 3250 cm-1 can barely be observed, while it is much 
stronger in the blue spectrum.  Both spectra, however, have very similar absorption features below 2000 
cm-1.  In both measurements, the clean diamond window is used as a reference. 
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Fig. 6.7:  Absorption difference between the two differential spectra in Fig. 6.6.  The difference spectrum 
highlights the changes in the OH stretching and bending regions.  The asymmetric feature at 1270 cm-1 is 
due to a relative shift in frequency of this band between the two experiments.   
 

6.3.3 Change of the Broadband Absorption 

 Finally, the modulation of the broadband IR absorbance of the substrate following 

exposure to NO2 is discussed.  The spectrum in Fig. 6.1A shows the following behavior: starting 

from the low-frequency cutoff of the detector (650 cm-1), the differential absorbance is positive 

and increases with the photon frequency until it reaches a maximum value near 1900 cm-1.  

Beyond 1900 cm-1, the differential absorbance begins to drop, reaching zero at 4400 cm-1 before 

becoming increasingly negative throughout the observable spectral range.  The shape of the 

differential absorption above 1900 cm-1 is nearly exactly opposite the broadband absorption 

observed in Fig. 6.1A, which was assigned to excitations across the gap in the oxidized regions 



www.manaraa.com

192 
 

of the sample.  The negative absorption in this region suggests a suppression of the excitations 

across the gap induced by the epoxide groups.  This observation, coupled with the fact that the 

most significant changes to the calculated density of states were caused by the structure of Fig. 

6.3B, suggests that this modulation of the broadband absorbance is a result of the interaction of 

the NO2 molecules with the substrate epoxide groups.  This conclusion is supported by  our first-

principles calculations.  The data in section 4.4.2.3 showed that epoxide groups present in RGO, 

depending on their concentration, can open a gap in the DOS and result in the absorption onset 

seen in our IR measurements.  The calculation of the TDOS shown in Fig. 6.5 shows that, 

following the reaction between the NO2 and epoxide groups, the TDOS near the Fermi level is 

graphene-like and hole doped resulting from the significant charge transfer to the physisorbed 

NO3 complex. Despite the valence and conduction bands being gapless (in the idealized model), 

this hole doping will have the effect of creating an optical gap, and hence an additional 

absorption threshold observed in the IR spectrum.  The direct excitations across the optical gap 

give rise to the increased absorption observed in the differential spectra from 650-4000 cm-1 

(Fig. 6.1A).  The negative absorbance occurs because the differential absorption spectrum 

represents the change in absorbance of the initial and final states of the sample.  Following 

removal of the epoxide groups, the absorption due to direct excitations across the gap will be 

eliminated.  The change in absorption will be directly related to the difference between the joint 

density of states (JDOS) of the initial and final systems.  In the vicinity of an M0-type critical 

point, the JDOS carries the functional form ߩ௖௩ ן  ݉௥
ଷ/ଶඥ԰߱ െ  ௖௩ is the JDOS andߩ ௚, whereܧ

mr is the reduced effective mass of the valence and conduction band states.  Thus the change in 

absorbance will be proportional to ∆ܣ ൈ ߱ ן ݉௥,௙
ଷ/ଶඥ԰߱ െ ௚௙ܧ െ ݉௥,௜

ଷ/ଶඥ԰߱ െ  ௚௜.  It isܧ

important to note that when ܧ௚,௙ ൏  ௚,௜, which is the case indicated by our IR data, the change inܧ
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absorption can only become negative if the reduced effective mass of the initial state is greater 

than that of the final state.  The negative absorbance above 4400 cm-1 is thus consistent with the 

model effect of epoxide removal to form a more an electronic state that is more similar to 

graphene, which has the lowest possible effective mass near the Fermi energy.  Even in reality, 

where the structure is more complex than a simple 3×3 graphene cell with a single epoxide, the 

process of removing oxygen to form states with lower effective mass, albeit not identical to those 

of pure graphene, is consistent with our experimental observations.  This effect of lowering the 

reduced mass has an important implications for the mechanism of RGO based sensors: the 

generation of available holes will increase the carrier density, and the lowering of the effective 

mass will increase the carrier mobility and correspondingly the substrate conductivity.  Such an 

effect is consistent with transport measurements on the NO2/RGO system [10, 14, 17].  Thus the 

interaction of NO2 with the epoxide groups in RGO represents a significant enhancement in the 

adsorbate-substrate interaction as compared with that of pure graphene.       

 

6.4 Conclusions 

The adsorption of NO2 onto RGO is characterized by several distinct species present on the 

surface including physisorbed NO2 and N2O4, NO3
- and chemisorbed NO2

-.  While all of the 

adsorbates produce an acceptor behavior that could contribute to the observed sensing response, 

the formation of the charged NO3 complex has the largest impact on the electronic structure.  

The reaction with the NO2 with epoxide groups has a combined effect of lowering the gap in the 

DOS that is induced by the epoxide groups as well as behaving as an acceptor molecule.  The net 

effect is an increase in the hole concentration as well as the hole mobility.   
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Chapter 7:  Concluding Remarks 

 This work in this dissertation has been a compilation of different aspects of carbon-based 

materials science and optical instrumentation/analysis.  In particular, I have focused on 

understanding the role of oxygen atoms incorporated into graphene through various channels and 

in different structural configurations.  The conclusions in this work have involved an intimate 

collaboration between experiments and theory, and the combined approaches have been used to 

identify the relationships between oxygen adatoms (epoxide groups), atomic and electronic 

structure, and reactivity.     

 Experiments involving in situ SAD studies of thermal reduction of GO, while initially 

motivated by understanding sensor materials, revealed a surprising and exciting ordering on 

and/or in the sample.  This observation led to a number of experiments and theoretical 

calculations to understand the nature of the ordering and its parent structure.  The result of this 

collaboration found that the structure that was most consistent with experimental measurements 

and thermodynamic probability was the so-called graphene monoxide, which happened to have 

many appealing properties.  The subsequent discovery of the necessity of the presence of Mo in 

order to produce the material, however, drew serious questions about the validity of the 

interpretation of GMO.  Ongoing experiments are currently providing increasing evidence that 

the Mo initially used as the TEM support becomes incorporated into the structure during the 

reduction process, and a possible interpretation is that there has not been any actual synthesis of 

GMO.  This represents a critical ongoing question that will hopefully be targeted by future x-ray 

scattering experiments.   
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 Depending on whether the oxygen groups are ordered to form periodic crystal or act as 

disordered dopants, the introduction of oxygen into the graphene lattice opens a gap in the 

density of states, rendering it a semiconductor.  The semiconducting behavior possessed by both 

RGO and the hypothetical GMO is attractive for a number of applications, including gas sensing.  

In addition, the residual oxygen groups in RGO as well as the comparatively large concentration 

of defective sites RGO as compared to graphene result in a larger interaction with the target 

molecules.  Infrared measurements combined with theoretical modeling further indicate that the 

residual epoxide groups in RGO are highly active toward NH3 and NO2, and this interaction 

plays a large role in mediating the conductivity (dc and optical) of RGO-based sensors.  Thus the 

very properties that render the transport properties of RGO inferior to graphene make it far 

superior in applications that require an interaction between the substrate and adsorbate.   

 The IR measurements thus far, combined with theoretical modeling, have revealed 

important information on the bonding configuration of adsorbates on RGO.  Future directions 

should focus on understanding similar interactions in hybrid systems where RGO is used as a 

support for metal and metal oxide nanocrystals.  These systems are currently demonstrating great 

promise for gas sensing applications[1-3], as well as heterogeneous catalysis and 

photocatalysis[4-7].  In addition, there is great potential for nitrogen-doped graphene in these 

applications, as it has been demonstrated that the N-dopants eliminate the need for the noble 

metal nanocrystal component of the catalyst system [8].   
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